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The Dirichlet BVP

Let Q c R3 be a bounded Polyhedron.

The Dirichlet problem for the Laplace equation in Q€ is

Au=0 in Q°, o
u=gp on I,
u()[=O(x|™")  for x| - co.
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The Dirichlet BVP
uniqueness of solution of DBVP

For every gp € HY/2(T') there is exactly a solution u € Hi _(Q°) to
the variational formulation of the DBVP.
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The Dirichlet BVP
the indirect approach

We use the indirect approach, which means that we make the
Ansatz

e(y) c
o) = (Vo)) = [ 5 ds,, xear,
' drlx -y
The density function ¢ is the solution of the boundary integral
equation

Vow=gp onT. (1)
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The Dirichlet BVP
the weakly singular integral operator Vg

Recall that the weakly singular boundary integral operator
Vo : H7Y2(M) - HY2(T)
is defined through
(Vod)(x) =vp(WE ¢)(x) for xeT.

Moreover it is bounded and elliptic, and thus invertible.
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The Dirichlet BVP
the Galerkin-BEM

The Galerkin-BEM is founded on the variational formulation of (1):
find ¢ € H™Y/2(I") such that

(Vow,7)r = (gp, 7)r
for all 7€ HY/2(T).
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The Dirichlet BVP
the direct approach

The direct approach would be

u(x) = /r Go(x,y ) 1u(y)ds, - /r nGo(x,Y)g(y)dsy, x € Q°

where yyu is the unique solution of

1
(Voywu, 7)r = ((5/ + Ko)gp, 7)r for all 7€ HY2(T).
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Galerkin approximation

The idea of Galerkin approximation is to consider the variational
problem on a much smaller (finite) subspace and to try to solve
the integral equation there.
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Galerkin approximation
construction of the discrete space

Let assume that the boundary I := 92~ is the union of finite
disjoint sides [';:

_J
r=yUr.

J=1
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Galerkin approximation

construction of the discrete space

Now consider a sequence {I'y}y € N of meshes

QC
N
v =U7
I=1
with boundary elements 7;.
-

Moreover we assume that for any / there's a unique index j with
T| C FJ-.
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Galerkin approximation

construction of the discrete space

The local mesh size of 7 is

hi:= sup [x-y|.

X,YET|

Remark: in this presentation 7/s are chosen to be triangles.
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Galerkin approximation
construction of the discrete space

SY(I) is the space of piecewise constant functions.
Sh(T) = span{ bR}l

where

0, | 1 forxemy,
bi(x) = { 0 elsewhere.

Similarly we can define the space of piecewise polynomial functions
Sp(r).

b°(x)
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Galerkin approximation
Galerkin idea

Since
SP(M) c HY2(T)

we can limit the variational problem above to Sy ().

To do this, we substitute ¢ with

M
on(x) =Y @ik bL(x).
]
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Galerkin approximation
SP(T) c HY3(T)

Let pe SP(T), then

[Pl -2y

IN

IN

IN

<P,¢>r

sup
peH2(I),[]=1

sup /p-(de
¢eHY2(T), |o]=1/T

sup sup(p(X))/rdx/S

peHII2(T), |1 xel
sup

C(p)
$eH2(T), | ¢ =1
C(p)- C(T).

Il 2yl @l 2ery
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Galerkin approximation
Galerkin idea

The Galerkin variational formulation of the Dirichlet BVP reads to
find p € SP(I) such that

<v0$0h77'h>r = <gD,7'h>r for all Th € S,’j(l‘)
This problem is equivalent to find ¢} such that
(Vown, b} )r = (gp, b)r  forall I=1,---, M.

By inserting the definition of ©p, we have

M
Z (pk<\/0b£, bf)r = (gD, bf)r for all [ = 1,---, M.
k=1
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Galerkin approximation
Galerkin idea

These M linear equations can be collected in the following linear
system

M M

(<vobz, b;’>r) (o - (<gD, b7>r)

1,k=1 =1

We have reduced the original problem to a linear problem.

Remark: we have chosen {b}’}; as an orthonormal system, this is
possible because ¢, is independent of the basis.
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Galerkin approximation
stiffness matrix and load vector

Now the difficulties lies in the computation of the stiffness matrix
M
(tvoof. )
1k=1
and of the load vector

M
((gD,bf)r) .

=1
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Galerkin approximation
stiffness matrix and load vector

Note:

@ the stiffness matrix and the load vector are full and usually
can’t be found analytically,

@ the numerical computation of these integral is also extremely
difficult (see the following presentation)!
M

; -1
@ Moreover it holds cond2((V0¢2,<p?)r) <ch™.
Ik=1
For the rest of the presentation we will assume that they have been
computed exactly.
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Galerkin approximation
stiffness matrix and load vector

The stiffness matrix is
@ symmetric (since the kernel is),
@ positive definite (also because of the kernel).

Thus the linear problem has exactly a solution ¢, (which is called
Galerkin solution).
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Galerkin approximation

Galerkin orthogonality and quasi-optimal convergence

Moreover the Galerkin solution satisfies:

(Vo(p—¢n),n)r=0 for every neSP

and
le = enll gy < Cg& I =nllg12¢ry-
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Galerkin approximation

proof of Galerkin orthogonality and quasi-optimal convergence

Galerkin orthogonality: let n € Sﬁ, then

(Vole—wn)smir = (Vow,mr — (Vown, n)r

= (go,n)r—{gp,n)r
= 0.
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Galerkin approximation

proof of Galerkin orthogonality and quasi-optimal convergence

. : P
Quasi-optimal convergence: let n € S;, then

le=enlp1r@y < C(Voleo—on) o= pn)r
= C(Vo(p —wn)phr = {(Vole = ¢n), on)r
= C(Vo(¢—n)sp)r
= C(Vole—n),o)r = (Vole = ¢n),mr
< CVollle = enll a2 (ryle =l g-v2(ry-
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Galerkin approximation
motivation of the Galerkin idea

Lemma: let {I',}ney be a sequence of meshes with hj, . — 0.

Then the sequence {@pn }nen converges to ¢ in H/2(I).
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Galerkin approximation
convergence of Galerkin solution

In general ¢ is not continuos, thus we just consider ¢, € SO(I)
Theorem: let ¢ be in H*(T") for s € [0,1], then

le =l 12(ry < Ch*1/2 lel s ry-
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Galerkin approximation
proof of convergence of Galerkin solution
Let assume that the following lemma is true

Lemma: ¢ € H*(T) for s € [0,1]. Let

M
Qo= ¢k bY(x)
k=1

P ::/ np(x)dx:/ 1ldx.
Tk Tk

le = Qell2(ry < ch®|ul psry-

with

Then
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Galerkin approximation
proof of convergence of Galerkin solution

Then we have

le - 80h||H—1/2(r)

IA

IA

IA

IN

C min || — _
nes? I =nly 1/2()

Cle - Qo H-1/2(T)

C  sup (- Qp, o)
peHY2(T),[¢]=1
C  sup (- Qp,¢0-Qo)r|
peHY2(T),|¢]=1
Cle - Q<P||L2(r) sup le - QSOHB(F)
peHY2(I),[¢|=1
ch™ 2| u]l s ry -
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The BEM solution of the BVP

The approximation of the solution of the Dirichlet BVP is then

on(y) c
= L7 Q°.
tn(x) /rmrx—yn A

Thus we have the pointwise error estimate

[u(x) = ()] < Clio = @nlrery-
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Convergence of BEM
global error estimate

Theorem: let u e HY(Q) be the solution of the DBVP, then
lu=unl () < cle=enlg1rm-
Thus, if ¢ € HY(I') we have

lu= unllineay < o = onll p(ry.-
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Convergence of BEM
proof of global error estimate

First define g := Vopp and & := \VgLSOh-

Then recall that the Inverse Trace Theorem states that the trace

operator
v HH(QS) - HY2(T)

has a continuous right inverse operator

£ HY2(M) > HY(QO).
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Convergence of BEM
proof of global error estimate

Thus we can define ug :=u—Eg and p := &1 — £g as functions in
Hg (). Since u and @i satisfy

<VU,VV)H6(Q) =0 forall veHy(Q)

(VE, V)i =0 forall ve H; (),

we have
(V(up +Eg), vV)H&(Q) =0 forall veHi(Q)

(V(do +EE), V) =0 forall v e Hy(Q).
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Convergence of BEM
proof of global error estimate

We subtract the two equations and we obtain

(V(uo - do), VV)Hg(Q) =(V(&(g-8g)), vV)H&(Q) for all v e Ho ().

Then
”uo—JoHi&(Q) < C(V(uo —do), V(uo = o)) (o)
= C(V(g(é—g))av(uo—L70)>H3(Q)
< CIEE - £) syl uo - dol ey
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Convergence of BEM
proof of global error estimate

Finally
lu=tlp) < luo=dollmq)+ 1€(& - &)lma)
< ClEE-2)ln e
< Clg -8l
= C[Volen— @)l
< Clen = elp12)
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The Helmholtz Equation
the Dirichlet BVP

The Dirichlet BVP for the Helmholtz Equation in Q€ is

~Au-k’u=0 in Q°,
u = gD on r,
lu()| = O(x]™) for |x] — oo

¢ —ikul < O(|x[7)  for x| - oo.
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The Helmholtz Equation

We know that the solution u € H} _(Q°) is unique, thus we could
try to work in an analogous way to the Laplace problem. We make
the Ansatz

u(x) = (WsLkp) for x e Q°

where ¢ satisfies

(Vikp)(x) = gp(x) for xeT.
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The Helmholtz Equation

Unfortunately the latter boundary integral equation is not unique
solvable for those k such that k? =: X is an eigenvalue of the
interior Dirichlet eigenvalue problem

=Auy = Auy, in Q,
u=gp onl,

because in this case the single layer potential V : H-1/2(r) - HY/?
is no more injective.
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