
The Helmholtz Equation
Seminar BEM on Wave Scattering

Rene Rühr
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Poincare - Steklov Operator

Last time we saw the Calderon projection, enabling us to write the
following system of BIE for the Cauchy data γDu, γNu(

γDu
γNu

)
=

(
1
2 I − K0 V0

W0
1
2 I + K ′0

)(
γDu
γNu

)
(here for for homogeneous case ∆u = 0) where

V0 : H−
1
2 (Γ)→ H

1
2 (Γ)

K0 : H
1
2 (Γ)→ H

1
2 (Γ)

K ′0 : H−
1
2 (Γ)→ H−

1
2 (Γ)

W0 : H
1
2 (Γ)→ H−

1
2 (Γ)
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Steklov - Poincare Operator

We proved (in 3d) V0 : H−
1
2 (Γ)→ H

1
2 (Γ) is elliptic ⇒ invertible!

Rewrite first equation:

γNu = V−1
0 (

1

2
I + K0)γDu

Define S0 := V−1
0 ( 1

2 I + K0) : H
1
2 (Γ)→ H−

1
2 (Γ)

...called Steklev-Poincare-Operator

→ S0 is a Dirichlet-to-Neumann map
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Steklov - Poincare Operator

Second equation of the Calderon projection admits another
representation:

S0 = W0 + (
1

2
I + K ′0)V−1

0 (
1

2
I + K0)

S0 admits the same ellipticity estimates as W0:

〈Sv , v〉Γ ≥ 〈W0v , v〉Γ

⇒ H
1
2
∗ (Γ)-elliptic.
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Wave equation reduces to Helmholtz Equation

The wave equation is

∂2

∂t2
Ψ− c2∆Ψ = 0

assume the solution to be time harmonic:

Ψ(t, x) = e−iwtu(x)

then u will satisfy

−w 2u − c2∆u = 0 or −∆u − k2u = 0 with k =
w

c

... called Helmholtz equation.
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Wave equation reduces to Helmholtz Equation

Fundamental solution of −∆u − k2u = 0 in R3

Gk(x , y) =
1

4π

e ik|x−y |

|x − y |
x 6= y

also 1
4π

e−ik|x−y|

|x−y | is a fundamental solution - justify our choice later

Just as for the Laplace, in n=2, things are a little bit different, Y0 the
second kind Bessel function of order zero,

Gk(x , y) =
1

2π
Y0(k|x − y |) x 6= y

whose singularity at x → y behaves like the log s as s → 0

we study the Exterior Dirichlet Problem (EDP) for a bounded domain
Ω ⊂ R3

−∆u − k2u = 0 in Ωc and u = g in ∂Ω = Γ
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Radiation condition

Problem: in general won’t be unique

... for consider A e ikr

r and B e−ikr

r spherical waves will both satisfy the
Helmholtz equation

want our solution of the EDP also behaves like an outgoing wave!

so let’s look for a condition only u∞ = A e ikr

r satisfies.∣∣∣∣ ∂∂r
u∞ − iku∞

∣∣∣∣ = o(
1

r 2
) as r →∞

Sommerfeld Radiation Condition!
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Radiation condition

consider −∆u − k2u = f in Rn.

u = Gk ∗ f is a solution

.. that satifies, putting x = rω

A(ω)
e ikr

r
+ o(r−2) as r →∞

right choice of sign!
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Uniqueness

Uniqueness of the EDP!

Theorem

There is at most one radiating solution u ∈ H1
loc(Ωc) of

−∆u − k2u = 0 on Ωc

γcDu = g on Γ,

where g ∈ H
1
2 (Γ).
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Uniqueness

need the following Lemma established by Rellich:

Lemma

Let k > 0 and u a solution of

−∆u − k2u = 0 on Bρ0(0)
c

and suppose that

lim
ρ→∞

∫
|x |=ρ

|u(x)|2dσ = 0

then u = 0 on Bρ0(0)
c
.
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Uniqueness

and, with a little work, it follows that

Corollary

Let u ∈ H1
loc(Ωc) be a solution of the homogeneous exterior Helmholtz

equation,
−∆u − k2u = 0 on Ωc

and satisfies in addition to the Sommerfeld radiation condition also

=
(

k

∫
Γ
(γcN ū)(γcDu) dσ

)
≥ 0,

then u = 0 on Ωc .
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Uniqueness

Proof:

Let’s bound our domain: Ωc
ρ = Ωc ∩ Bρ

Green’s 1st⇒
∫

Ωc
ρ

∇ū · ∇u − k̄2ūu dx = 〈(−∆− k2)u, u〉L2(Ωc
ρ)

+ 〈γNu, γDu〉L2(∂Ωc
ρ)

first term vanishes by assumption. Multiply with k and take the
imaginary part

=(k)

∫
Ωc

ρ

|∇u|2−|k |2|u|2 dx =

∫
∂Bρ

=
(

k
∂ū

∂ν
u

)
dσ−

∫
Γ
=
(

k
∂ū

∂ν
u

)
dσ

Rene Rühr (ETH Zürich) The Helmholtz Equation October 28, 2010 15 / 34



Uniqueness

last integral can be rewritten since∣∣∣∣∂u

∂ρ
− iku

∣∣∣∣2 =

∣∣∣∣∂u

∂ρ

∣∣∣∣2 + |k|2|u|2 + 2=
(

k
∂ū

∂ν
u

)

⇒ =(k)

∫
Ωc

ρ

|∇u|2 + |k|2|u|2 dx +
1

2

∫
∂Bρ

∣∣∣∣∂u

∂ρ

∣∣∣∣2 + |k |2|u|2 dσ =

+

∫
∂Bρ

∣∣∣∣∂u

∂ρ
− iku

∣∣∣∣2 dσ −
∫

Γ
=
(

k
∂ū

∂ν
u

)
dσ.

=(k) > 0⇒
∫

Ωc
ρ
|u|2dx → 0

=(k) = 0⇒ Rellich applies
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Integral operators and Boundary Integral Equations

As for the Laplace, we define the boundary integral operators as

(Vkw)(x) =

∫
Γ

Gk(x , y)w(y)dsy

(Kkv)(x) =

∫
Γ

∂

∂ny
Gk(x , y)v(y)dsy

(K ′kv)(x) =

∫
Γ

∂

∂nx
Gk(x , y)v(y)dsy

(Wkv)(x) =− ∂

∂nx

∫
Γ

∂

∂ny
Gk(x , y)v(y)dsy
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Integral operators and Boundary Integral Equations

with the same properties as for the Laplace

Theorem

For a bounded Lipschitz domain, the boundary integral operators

Vk : H−
1
2 (Γ)→ H

1
2 (Γ)

Kk : H
1
2 (Γ)→ H

1
2 (Γ)

K ′k : H−
1
2 (Γ)→ H−

1
2 (Γ)

Wk : H
1
2 (Γ)→ H−

1
2 (Γ)

are continous.

Remark

One has the equalities Wk = Kk + 1
2 Id and Vk = K ′k + 1

2 Id.
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Integral operators and Boundary Integral Equations

well... not exactly the same properties: Vk no longer elliptic!

but we still have

Lemma

Vk : H−
1
2 (Γ)→ H

1
2 (Γ) is coercive, i.e. there exists a compact operator

C : H−
1
2 (Γ)→ H

1
2 (Γ) such that the Gardings inequality

〈Vkw ,w〉L2(Γ) + 〈Cw ,w〉L2(Γ) ≥ const ||w ||2
H−

1
2 (Γ)

∀w ∈ H−
1
2 (Γ)

holds.
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Integral operators and Boundary Integral Equations

the single and double layer potential give us radiating solution:

Theorem

If φ ∈ H−
1
2 (Γ) then for u = ΨSLφ satisfies the Sommerfeld radiation

condition and
(−∆− k2)u = 0 in Rn \ Γ

Analogously for u = ΨDLφ if φ ∈ H
1
2 (Γ).
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Integral operators and Boundary Integral Equations

suppose u ∈ H1
loc(Ωc) with (−∆− k2)u = 0 in Ω ∪ Ωc satisfies

u = −ΨSL[γNu] + ΨDL[γDu] in Ω ∪ Ωc

→ Integral representation formula

take traces to get the exterior Calderon projection(
γcDu
γcNu

)
=

(
1
2 I + Kk −Vk

−Wk
1
2 I − K ′k

)(
γcDu
γcNu

)

different signs w.r.t to the interior Calderon
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Integral operators and Boundary Integral Equations

boundary integral equations to the exterior Dirichlet problem:

Direct Method - integral equality of the first kind: Let g ∈ H
1
2 (Γ). Find

ψ ∈ H−
1
2 (Γ) such that

〈Vkψ,ϕ〉L2(Γ) = −1

2
〈g , ϕ〉L2(Γ) + 〈Kkg , ϕ〉L2(Γ) ∀ϕ ∈ H−

1
2 (Γ)

Direct Method - integral equality of the second kind: Let g ∈ H
1
2 (Γ). Find

ψ ∈ H−
1
2 (Γ) such that

1

2
〈ψ,ϕ〉L2(Γ) + 〈K ′kψ,ϕ〉L2(Γ) = −〈Wkg , ϕ〉L2(Γ) ∀ϕ ∈ H

1
2 (Γ)
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Integral operators and Boundary Integral Equations

Indirect Method - using the single layer potential: Let g ∈ H
1
2 (Γ). Find

ψ ∈ H−
1
2 (Γ) such that

〈Vkψ,ϕ〉L2(Γ) = 〈g , ϕ〉L2(Γ) ∀ϕ ∈ H
1
2 (Γ)

Indirect Method - using the double layer potential: Let g ∈ H
1
2 (Γ). Find

ψ ∈ H−
1
2 (Γ) such that

1

2
〈ψ,ϕ〉L2(Γ) + 〈Kkψ,ϕ〉L2(Γ) = 〈g , ϕ〉L2(Γ) ∀ϕ ∈ H−

1
2 (Γ)
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Representation Formula

for the exterior Calderon operator we assumed Greens representation
formula.. does it hold?

yes - thanks to the radiating property!

Theorem

Let g ∈ H
1
2 (Γ). And suppose u ∈ H1

loc(Ωc) is a radiating solution of

−∆u − k2u = 0 on Ωc

γcDu = g on Γ,

then u has the integral representation

u = ΨDLg −ΨSL(γcNu).

Rene Rühr (ETH Zürich) The Helmholtz Equation October 28, 2010 26 / 34



Representation Formula

Proof idea:

Ωc
ρ = Ωc ∩ Bρ

Green⇒ u(x) = +ΨSL(γcNu)(x)−ΨDL(γcDu)(x)

−
∫
∂Bρ

G (x , y)γNu(y) dσ +

∫
∂Bρ

γNG (x , y)γDu(y) dσ

Sommerfeld radiation condition ⇒ two last terms vanish as ρ→ 0
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Existence

we’re ready to prove the existence!
..by showing that we can solve the BIE.
so we need

Theorem

Let g ∈ H
1
2 (Γ). And suppose u ∈ H1

loc(Ωc) is a radiating solution of

−∆u − k2u = 0 on Ωc γcDu = g on Γ,

then φ = γcN ∈ H−
1
2 (Γ) is a solution of the boundary integral equation

Vkφ = (− Id /2 + K )g on Γ, (1)

and u has the integral representation

u = ΨDLg −ΨSLφ. (2)

Conversely, if φ ∈ H−
1
2 (Γ) is a solution (1), then formula (2) defines a solution

u ∈ H1
loc(Ωc) of the exterior Dirichlet problem.
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Existence

the wave number k has influence on the BIE, namely

Theorem

Vk is injective on H−
1
2 (Γ) iff k2 is not an eigenvalue of −∆ of the interior

Dirichlet problem, i.e.

−∆u = k2u on Ω, γDu = 0⇒ u = 0 on Ω

The kernel of Vk is given by

ker(Vk) = span
[
γNv : −∆v = k2v on Ω and γDv = 0 on Γ

]
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Existence

to finalize, we also need the Fredholm Alternative

Theorem

Let A ∈ B(X ,Y ) coercive. If Au = 0 only allows the trivial solution u = 0,
then Au = f is uniquely solvable for all f ∈ Y . Else Au = f is solvable iff
〈v , f 〉 = 0 for all v ∈ Y ∗ : A∗v = 0.
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Existence

so at last

Theorem

Let Ω be a bounded Lipschitz domain with boundary Γ. Then for every

g ∈ H
1
2 (Γ) the exterior Dirchlet problem

−∆u − k2u = 0 on Ωc

γcDu = g on Γ

has a unique solution u ∈ H1
loc(Ωc) that satisfies the Sommerfeld radiation

condition.
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Existence

need to solve Vkφ = (− Id /2 + Kk)g on Γ

Vk coercive, so apply Fredholm!

k2 not an eigenvalue
Fredholm⇒ Vk invertible

Else: need to check solvability condition
〈w , (− Id /2 + Kk)g〉L2(Γ) = 0 for all w ∈ ker(V ∗k )

What’s ker(V ∗k )? Can modifiy thm about ker(Vk)!

ker(V ∗) = span
[
γNv : −∆v = k

2
v on Ω, γDv = 0 on Γ

]
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Existence

so take such a γNv and apply Green’s Identity

〈γNv , (−1

2
I + Kk)g〉L2(Γ) = 〈γNv , γD(ΨDLg)〉L2(Γ)

= 〈γDv , γN(ΨDLg)〉L2(Γ)

− 〈(−∆− k̄2)v ,ΨDLg〉L2(Ω)

+ 〈v , (−∆− k2)ΨDLg〉L2(Ω)

= 0

...since γDv = 0 on Γ, (−∆− k̄2)v = 0 and (−∆− k2)ΨDLg = 0 on
Ω.
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