1 Normed Fields & non-Archimedean Norms

Definition 1.1. A metric on a non-empty set X is a function

$$d : X \times X \longrightarrow \mathbb{R}_{\geq 0}$$

satisfying the following properties:

(1) $d(x, y) = 0 \iff x = y$

(2) $d(x, y) = d(y, x) \quad \forall x, y \in X$

(3) $d(x, y) \leq d(x, z) + d(z, y) \quad \forall x, y, z \in X$

(X, d) is called a metric space.

Definition 1.2. A sequence (x_n) in a metric space (X, d) is called Cauchy sequence if $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon \forall m, n > N$.

(X, d) is a complete metric space if any Cauchy sequence in X has a limit in X.

Definition 1.3. Let F be a field. A norm on F is a map $\| \cdot \| : F \rightarrow \mathbb{R}_{\geq 0}$ that satisfies:

(1) $\|x\| = 0 \iff x = 0$

(2) $\|xy\| = \|x\| \|y\| \quad \forall x, y \in F$

(3) $\|x + y\| \leq \|x\| + \|y\| \quad \forall x, y \in F$ (triangle inequality)

$(F, \| \cdot \|)$ is called a normed field.

A norm is trivial if $\|0\| = 0$ and $\|x\| = 1 \forall x \in F \setminus \{0\}$.
Remark 1.1. A norm $\| \cdot \|$ on a field F induces a metric on F by:

$$F \times F \rightarrow \mathbb{R}_{\geq 0} : (x, y) \mapsto \| x - y \|$$

This allows us to regard a normed field $(F, \| \cdot \|)$ as a metric space.

Proposition 1.1. For any $x, y \in F$ we have:

(a) $\| 1 \| = \| - 1 \| = 1$

(b) $\| x \| = \| - x \|$

(c) $\| x \pm y \| \geq \| x \| - \| y \|$

(d) $\| x - y \| \leq \| x \| + \| y \|$

(e) $\| x/y \| = \| x \|/\| y \|$

(f) $\| n \| \leq n \forall n \in \mathbb{N}$ (on the left hand side: $n := n \cdot 1_F \in F$)

Proof. (a) $\| 1 \| = \|(\pm 1) \cdot (\pm 1)\| = \| \pm 1 \|^2 \Rightarrow \| \pm 1 \| = 1$

(b) $\| - x \| = \| - 1\|\| x \| = \| x \|$

(c) $\| x \| = \| x \pm y \| \leq \| x \pm y \| + \| y \| \quad \Rightarrow \quad \| x \| - \| y \| \leq \| x \pm y \|$

Thus $\| x \pm y \| \geq \| x \| - \| y \|$.

(d) Follows from (b) and the triangle inequality.

(e) $\| y \| \| x/y \| = \| x \|$

(f) Follows by induction from (a) and the triangle inequality.

Definition 1.4. A norm is called non-Archimedean if it satisfies the strong triangle inequality:

$$\| x + y \| \leq \max\{ \| x \|, \| y \| \}.$$

If a norm does not satisfy the strong triangle inequality it is said to be Archimedean.

Remark 1.2. The strong triangle inequality clearly implies the triangle inequality.

We call a metric that is induced by a non-Archimedean norm an ultra-metric and the corresponding metric space an ultra-metric space.

An ultra-metric satisfies the strong triangle inequality:

$$d(x, y) \leq \max\{d(x, z), d(z, y)\}.$$
Proposition 1.2. $\| \cdot \|$ is non-Archimedean $\iff \|n\| \leq 1 \forall n \in \mathbb{Z}$

Proof. "\implies": Induction: $\|1\| = 1 \leq 1$. Suppose that $\|k\| \leq 1 \forall k \in \{1, \ldots, n-1\}$. $\|n\| = \|n - 1 + 1\| \leq \max\{\|n - 1\|, \|1\|\} = 1$. Hence $\|n\| \leq 1, \forall n \in \mathbb{N}$. Since we have that $\|n\| = \| - n\|$, the result follows.

"\impliedby":

\[\|x + y\|^n = \|(x + y)^n\| = \left\| \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} \right\| \]

\[\leq \sum_{k=0}^{n} \binom{n}{k} \|x\|^k \|y\|^{n-k} \]

\[\leq \sum_{k=0}^{n} \|x\|^k \|y\|^{n-k} \]

\[\leq (n + 1) \max\{\|x\|, \|y\|\} \]

Hence $\|x + y\| \leq (n + 1)^{1/n} \max\{\|x\|, \|y\|\}$.

Letting n tend to ∞ we get:

\[\|x + y\| \leq \max\{\|x\|, \|y\|\}. \]

\[\square \]

Proposition 1.3. The following are equivalent:

(i) $\| \cdot \|$ is Archimedean

(ii) $\| \cdot \|$ has the Archimedean property:

\[\text{given } x, y \in F, x \neq 0 \exists n \in \mathbb{N} \text{ such that } \|nx\| > \|y\| \]

(iii) $\sup\{\|n\| : n \in \mathbb{Z}\} = +\infty$

Proof. "(i) \implies (iii)" : By Proposition 1.2 $\exists n \in \mathbb{Z}$ such that $\|n\| > 1$ $\implies \|n^k\| = \|n\|^k \stackrel{k \to \infty}{\to} \infty$.

"(iii) \implies (ii)" : Given $x, y \in F, x \neq 0$ we can choose $n \in \mathbb{N}$ such that:

\[\|n\| > \frac{\|y\|}{\|x\|} \implies \|nx\| > \|y\|. \]

"(ii) \implies (i)" : Take $x, y \in F, x \neq 0$ such that $\|x\| \leq \|y\|$. By (ii) $\exists n \in \mathbb{N}$ such that $\|n\| > \frac{\|y\|}{\|x\|} \geq 1$, hence the result follows from Proposition 1.2. \[\square \]
Proposition 1.4. If $\| \cdot \|$ is non-Archimedean we have:

$$\|x - a\| < \|a\| \implies \|a\| = \|x\|$$

Proof.

$$\|x\| = \|x - a + a\| \leq \max\{\|x - a\|, \|a\|\} = \|a\|$$

and

$$\|a\| = \|a - x + x\| \leq \max\{\|a - x\|, \|x\|\}.$$

Suppose that $\|a - x\| > \|x\|$, then $\|x - a\| \geq \|a\|$ which contradicts the assumption. Therefore we get that $\|a\| \leq \|x\|$ and hence $\|a\| = \|x\|$.

Proposition 1.5. Any triangle in an ultra-metric space (X, d) is isosceles and the length of its base does not exceed the length of the other two sides.

Proof. Let $x, y, z \in F$. W.l.o.g. assume that $d(x, y) < d(x, z)$. Then:

$$d(y, z) \leq \max\{d(x, y), d(x, z)\} = d(x, z)$$

$$d(x, z) \leq \max\{d(x, y), d(y, z)\} = d(y, z)$$

Therefore: $d(x, z) = d(y, z)$.

Proposition 1.6. Let $\| \cdot \|$ be non-Archimedean. Any point of an open ball $B(a, r) := \{x \in F : \|x - a\| < r\}$ is its center. The same is true for closed balls.

Proof. Fix any $b \in B(a, r)$. Choose $x \in B(a, r)$, then

$$\|x - b\| = \|x - a + a - b\| \leq \max\{\|x - a\|, \|a - b\|\} < r.$$

Therefore we get that $B(a, r) \subset B(b, r)$. Similarly, we get that $B(b, r) \subset B(a, r)$ and thus $B(a, r) = B(b, r)$. This argument can easily be adapted to the case of closed balls.

2 The Completion of a Normed Field

It is well-known how the real numbers can be constructed from the rationals as equivalence classes of Cauchy sequences. In this section we will generalize this construction to arbitrary normed fields.

Let $(F, \| \cdot \|)$ be a normed field. Let CF denote the set of all Cauchy sequences in F. Componentwise addition and multiplication turns CF into a commutative ring which obviously contains lots of zero divisors and hence is in no way a field.
However, we will get a field from CF by identifying sequences which should have the same limit.

First we embed F into CF via the map

$$F \to CF : \quad a \mapsto \hat{a} := (a, a, a, \ldots).$$

Note that $\hat{0}$ and $\hat{1}$ are the neutral elements of addition and multiplication in CF.

Let

$$N := \{ (a_n) \in F^\mathbb{N} \mid \lim_{n \to \infty} \|a_n\| = 0 \}$$

be the set of all null sequences in F. Note that $N \subset CF$ since every converging sequence is a Cauchy sequence.

Proposition 2.1. This N is a maximal ideal in CF.

Proof. Claim 1: $(N, +)$ is a group.

Let $(a_n), (b_n)$ be null sequences. Let $\varepsilon > 0$ and $N, M \in \mathbb{N}$ such that $\forall n > N : \|a_n\| < \varepsilon/2$ and $\forall m > M : \|b_m\| < \varepsilon/2$. Then, by the triangle inequality, for all $k > \max\{N, M\} : \|a_k + b_k\| \leq \|a_k\| + \|b_k\| < \varepsilon$. That the additive inverse of a null sequence is again a null sequence is the direct consequence of Proposition 1.1 and that $\hat{0}$ is a null sequence is obvious.

Claim 2: Let (a_n) be a null sequence and (x_n) be any Cauchy sequence. Then, $(a_n x_n)$ is a null sequence.

First we prove that every Cauchy sequence is bounded. Let $C := \sup \{\|x_n\| \mid n \in \mathbb{N}\}$. Since for big enough n we know that $\|x_n\|$ can only lie in some interval $[\|x_m\| - \varepsilon, \|x_m\| + \varepsilon]$ for an appropriate m, we get $C < \infty$.

Now we prove that the product of a bounded sequence with a nullsequence is a nullsequence. Let $\varepsilon > 0$. Let now $N \in \mathbb{N}$ be such that $\forall n > N : \|a_n\| < \varepsilon/C$. Then, for $n > N : \|a_n x_n\| < \varepsilon/C \cdot C = \varepsilon$.

Hence, N is an ideal.

Claim 3: N is maximal.

Let (a_n) be a Cauchy sequence which is not a null sequence. We want to prove that $\hat{1} \in (N, (a_n))$. Since (a_n) is not a null sequence, there exists a $c > 0$ and an $N > 0$ such that for all $n > N : \|a_n\| > c$. Since for any $\varepsilon > 0$ and big enough n, m we have

$$\left\| \frac{1}{a_n} - \frac{1}{a_m} \right\| = \left\| \frac{a_m - a_n}{a_m a_n} \right\| \leq \frac{\varepsilon}{c^2},$$

Define now

$$b_n := \begin{cases} 1 & \text{if } a_n = 0 \\ 1/a_n & \text{else.} \end{cases}$$
By the above, \((b_n)\) is a Cauchy sequence. Define a null sequence \((x_n)\) as follows
\[
x_n := \begin{cases}
1 & \text{if } a_n = 0 \\
0 & \text{else.}
\end{cases}
\]
This is a null sequence since for big enough \(n\), all \(x_n\) are zero. Now,
\[
1 = a_n b_n + x_n
\]
for all \(n \in \mathbb{N}\) and hence \(\hat{1} \in (N, (a_n))\).

Define
\[
\hat{F} := CF/N.
\]
Since \(N\) is maximal, \(\hat{F}\) is a field. We now extend the norm of \(F\) to a norm on \(\hat{F}\).

Definition 2.1. Let \(a \in \hat{F}\). Then, the norm of \(a\) is defined by
\[
\|a\| := \lim_{n \to \infty} \|a_n\|
\]
where \(a = (a_n) + N\).

Proposition 2.2. This is a well-defined norm on \(\hat{F}\).

Proof. If two Cauchy sequences \((a_n), (b_n)\) differ only by a null-sequence, then by Proposition 1.1 we immediately get that
\[
\lim_{n \to \infty} \|a_n\| = \lim_{n \to \infty} \|b_n\|
\]
and hence \(\| \cdot \|\) is well-defined.

From the definition it directly follows that the elements with norm zero are exactly the null sequences. Multiplicativity and the triangle inequality also follow immediately.

Definition 2.2. The normed field \((\hat{F}, \| \cdot \|)\) is called the completion of \(F\) with respect to the norm \(\| \cdot \|\).

This terminology is justified by the following theorem.

Theorem 2.3. The normed field \((\hat{F}, \| \cdot \|)\) is complete and \(F\) is dense in \(\hat{F}\).

Proof. First we prove the second statement. Let \((a_n)\) be a Cauchy sequence in \(F\). Then, \((\hat{a}_n)\) is a sequence of (constant) Cauchy sequences and we have
\[
\lim_{n,m \to \infty} \|a_n - a_m\| = 0.
\]
Hence, \((\hat{a}_n)\) converges to the class represented by \((a_n)\). Hence, \(F\) is dense in \(\hat{F}\).

Now let \((A_n)\) be a Cauchy sequence of Cauchy sequences in \(F\), hence a representative of a Cauchy sequence in \(\hat{F}\). Since \(F\) is dense and \(A_n\) is a Cauchy sequence for every \(n\), we know that there exists a Cauchy sequence \((\hat{a}_n)\) for all \(n\) such that

\[
A_n - (\hat{a}_n) < \frac{1}{n}.
\]

It follows that

\[
(a_n) - (A_n) = ((a_n) - (\hat{a}_n)) - (A_n - (\hat{a}_n))
\]

is a null sequence in \(\hat{F}\). Therefore,

\[
\lim_{n \to \infty} \| (a_n) - A_n \| = 0
\]

The only thing left to check is that the field operations of \(\hat{F}\) come from \(F\) in a continuous way.

Proposition 2.4. Let \((a_n)\) and \((b_n)\) be Cauchy sequences in \(F \subset \hat{F}\). Then,

\[
\lim_{n \to \infty} (a_n + b_n) = (\lim_{n \to \infty} a_n) + (\lim_{n \to \infty} b_n)
\]

\[
\lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} b_n)
\]

Proof. From the proof of the above theorem follows

\[
\lim_{n \to \infty} (a_n + b_n) = (a_n + b_n) = (a_n) + (b_n) = (\lim_{n \to \infty} a_n) + (\lim_{n \to \infty} b_n)
\]

where we denote the class represented by \((a_n)\) also by \((a_n)\). Analog for multiplication. \(\square\)

3 The field of \(p\)-adic numbers \(\mathbb{Q}_p\)

Definition 3.1. Let \(p \in \mathbb{N}\) prime. For \(0 \neq x \in \mathbb{Q}\) we define the \(p\)-adic order of \(x\)

\[
\text{ord}_p(x) = \begin{cases}
\max\{n \in \mathbb{N} | p^n \text{ divides } x\}, & \text{if } x \in \mathbb{Z} \\
\text{ord}_p(a) - \text{ord}_p(b), & \text{if } x = a/b, b \neq 0, a, b \in \mathbb{Z}
\end{cases}
\]

Remark 3.1. For \(x = a/b, y = c/d \in \mathbb{Q}\) we have

\[
\text{ord}_p\left(\frac{ac}{bd}\right) = \text{ord}_p(ac) - \text{ord}_p(bd)
\]

\[
= \text{ord}_p(a) + \text{ord}_p(c) - \text{ord}_p(b) - \text{ord}_p(d)
\]

\[
= \text{ord}_p\left(\frac{a}{b}\right) + \text{ord}_p\left(\frac{c}{d}\right)
\]
and if \(x \neq -y\)

\[
\ord_p \left(\frac{a}{b} + \frac{c}{d} \right) = \ord_p \left(\frac{ad + cb}{bd} \right) = \ord_p(ad + cb) - \ord_p(bd)
\]

(2)

\[
\geq \min\{\ord_p(ad), \ord_p(cb)\} - \ord_p(b) - \ord_p(d)
\]

\[
= \min\{\ord_p(a) + \ord_p(d), \ord_p(c) + \ord_p(b)\} - \ord_p(b) - \ord_p(d)
\]

\[
= \min\{\ord_p(a) - \ord_p(b), \ord_p(c) - \ord_p(d)\}
\]

\[
= \min\{\ord_p\left(\frac{a}{b}, \frac{c}{d} \right)\}
\]

Definition 3.2. On \(\mathbb{Q}\) we define the p-adic norm

\[
|x|_p = \begin{cases}
p^{-\ord_p(x)}, & \text{if } x \neq 0 \\
0, & \text{if } x = 0
\end{cases}
\]

Proposition 3.1. \(|.|_p\) is a non-Archimedean norm on \(\mathbb{Q}\).

Proof. \(|x|_p = 0 \iff x = 0\) follows from the definition of the \(|.|_p\) norm.

\(|xy|_p = |x|_p|y|_p\) follows from (1).

For the strong triangle inequality we have

\[
|x + y|_p = p^{-\ord_p(x+y)} \leq \max\{p^{-\ord_p(x)}, p^{-\ord_p(y)}\} = \max\{|x|_p, |y|_p\}
\]

from (2). \(\square\)

Remark 3.2. Unlike the euclidean norm on \(\mathbb{Q}\), given two numbers \(a, b \in \mathbb{Q}\) with \(|a|_p < |b|_p\), we can’t always find a third number \(c \in \mathbb{Q}\) so that \(|a|_p < |c|_p < |b|_p\). In particular, \(|.|_p\) only takes values in \(\{p^k | k \in \mathbb{Z}\} \cup \{0\}\).

Definition 3.3. Let \(p \in \mathbb{N}\) be prime. The field of p-adic numbers \(\mathbb{Q}_p\) is defined as the completion of \(\mathbb{Q}\) with respect to \(|.|_p\), and its elements are equivalence classes of Cauchy sequences.

For an element \(a \in \mathbb{Q}_p\) and a Cauchy sequence \((a_n)\) representing \(a\), we defined the norm of \(a\) as

\[
|a|_p = \lim_{n \to \infty} |a_n|_p
\]

Remark 3.3. By remark 3.2, the norm of \(a \in \mathbb{Q}_p\) only takes values in \(\{p^k | k \in \mathbb{Z}\} \cup \{0\}\), just like \(|.|_p\). Also, if \(|a|_p = p^k \neq 0\), then for any Cauchy sequence representing \(a\) there is an \(N\) so that \(|a_n|_p = p^k\) for \(n > N\).

How does an element of \(\mathbb{Q}_p\) look like? The following proposition will give a way to construct one of them.
Proposition 3.2. Let $d_m \neq 0$ and $0 \leq d_i < p$ integers. Then the partial sums of the series

$$a = d_mp^{-m} + d_{m+1}p^{-m+1} + \cdots + d_{-1}p + d_0 + d_1p + d_2p^2 + \ldots$$

form a Cauchy sequence and therefore a is an element of \mathbb{Q}_p.

Proof. Let $\epsilon > 0$. Then we can find $N \in \mathbb{N}$ so that $p^{-N} < \epsilon$, and for $n, k > N$, WLOG $k > n$, we have

$$\left| \sum_{i=-m}^{k} d_ip^i - \sum_{i=-m}^{n} d_ip^i \right|_p = \left| \sum_{i=n+1}^{k} d_ip^i \right|_p \leq \max\{|d_{n+1}p^{n+1}|_p, \ldots, |d_kp^k|_p\} \leq p^{-N} < \epsilon$$

We might now wonder if every element of \mathbb{Q}_p looks like a series (3).

The following propositions will help us prove that every $a \in \mathbb{Q}_p$ actually has a unique Cauchy sequence representing it that looks like (3).

Proposition 3.3. Let $x \in \mathbb{Q}$ with $|x|_p \leq 1$. Then for any i there is a unique integer $\alpha \in \{0, 1, \ldots, p^i - 1\}$ so that $|x - \alpha|_p \leq p^{-i}$.

Proof. Let $x = a/b$ with a and b relatively prime. Since $|x|_p = p^{-\text{ord}_p(a)+\text{ord}_p(b)} \leq 1$ we get $\text{ord}_p(b) = 0$, that is, b and p^i are relatively prime for any i. We can then find integers m and n so that $np^i + mb = 1$. For $\alpha = am$ we get

$$|\alpha - x|_p = \left| am - \frac{a}{b} \right|_p = \left| \frac{a}{b} \right|_p |mb - 1|_p \leq |mb - 1|_p = |np^i|_p = |n|_pp^{-i} \leq p^{-i}$$

There is exactly a multiple cp^i of p^i so that $cp^i + \alpha \in \{0, 1, \ldots, p^i - 1\}$, and we have

$$|cp^i + \alpha - x|_p \leq \max\{|\alpha - x|_p, |cp^i|\} \leq \max\{p^{-i}, p^{-i}\} = p^{-i}$$

Theorem 3.4. Let $a \in \mathbb{Q}_p$ with $|a|_p \leq 1$. Then there is exactly one Cauchy sequence (a_n) representing a so that for any i

1) $0 \leq a_i < p^i$
2) $a_i \equiv a_{i+1} \pmod{p^i}$

Proof. Let (c_n) be a Cauchy sequence representing a. Since $|c_n|_p \rightarrow |a|_p \leq 1$, there is an N so that $|c_n|_p \leq 1$ for any $n > N$. (If $|a|_p = 1$ this still holds because of remark 3.3)

By replacing the first N elements we can find an equivalent Cauchy sequence so
that $|b_n|_p \leq 1$ for any n. Now, for every $j = 1, 2, \ldots$ let $N(j)$ be so that $N(j) \geq j$ and

$$|b_i - b_{i'}|_p \leq p^{-j} \quad \forall i, i' \geq N(j)$$

From the previous proposition we know that for any j we can find integers $0 \leq a_j < p^j$ (condition i)) so that

$$|a_j - b_{N(j)}|_p \leq p^{-j}$$

These a_j also satisfy condition ii):

$$|a_{j+1} - a_j|_p = |a_{j+1} - b_{N(j+1)} + b_{N(j+1)} - b_{N(j)} - b_{N(j)} - a_j|_p$$

$$\leq max\{|a_{j+1} - b_{N(j+1)}|_p, |b_{N(j+1)} - b_{N(j)}|_p, |b_{N(j)} - a_j|_p\}$$

$$\leq max\{p^{-j-1}, p^{-j}, p^{-j}\} = p^{-j}$$

This sequence is equivalent to (b_n): for any j take $i \geq N(j)$

$$|a_i - b_i|_p = |a_i - a_j + a_j - b_{N(j)} + b_{N(j)} - b_i|_p$$

$$\leq max\{|a_i - a_j|_p, |a_j - b_{N(j)}|_p, |b_{N(j)} - b_i|_p\}$$

$$\leq max\{p^{-j}, p^{-j}, p^{-j}\} = p^{-j}$$

so $|a_i - b_i| \rightarrow 0$.

Now, to show uniqueness, let (d_n) be another Cauchy sequence satisfying conditions i) and ii) and let $(a_n) \neq (d_n)$, that is, for some i_0, $a_{i_0} \neq d_{i_0}$. Since a_{i_0} and d_{i_0} are between 0 and p^{i_0}, $a_{i_0} \neq d_{i_0} \pmod{p^{i_0}}$. From condition ii) we have that for $i > i_0$, $a_i = a_{i_0} \neq d_{i_0} = d_i \pmod{p^{i_0}}$, that is, $a_i \neq d_i \pmod{p^{i_0}}$ and therefore

$$|a_i - d_i|_p > p^{-i_0}$$

doesn’t converge to 0 and (a_n) and (d_n) aren’t equivalent.

Remark 3.4. For $a \in \mathbb{Q}_p$ with $|a|_p \leq 1$ we can write the Cauchy sequence (a_n) representing a from the previous proposition as

$$a_i = d_0 + d_1p + \cdots + d_{i-1}p^{i-1}$$

for $d_i \in \{0, 1, \ldots, p - 1\}$ and a is represented by the convergent series

$$a = \sum_{i=0}^{\infty} d_i p^i$$

which we can think of as a number written in base p which keeps extending to the left

$$a = \ldots d_n \ldots d_1 d_0$$
Remark 3.5. If \(a \in \mathbb{Q}_p \) with \(|a|_p = p^m > 1 \) then \(a' = ap^m \) satisfies \(|a'| = p^m p^{-m} = 1 \) and we can then write

\[
a = a'p^{-m} = p^{-m} \sum_{i=0}^{\infty} c_i p^i = \sum_{i=-m}^{\infty} d_i p^i
\]

with \(d_{-m} = c_0 \neq 0 \) and \(a \) becomes a fraction in base \(p \) with finitely many digits after the point and which extends infinitely to the left

\[
a = \ldots d_n \ldots d_1 d_0. d_{-1} d_{-2} \ldots d_{-m}
\]

Definition 3.4. This way of writing \(a \in \mathbb{Q}_p \) as a number written in base \(p \) which keeps extending to the left is called the \(p \)-adic expansion of \(a \). This will either look like

\[
a = \ldots d_n \ldots d_1 d_0
\]

for \(d_i \in \{0, 1, \ldots, p-1\} \), if \(|a|_p \leq 1 \), or like

\[
a = \ldots d_n \ldots d_1 d_0. d_{-1} d_{-2} \ldots d_{-m}
\]

for \(d_i \in \{0, 1, \ldots, p-1\} \) and \(d_{-m} \neq 0 \), if \(|a|_p > 1 \).