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1.1

Definition 1.1. For a measurable function f : R" — R, we define its
associated distribution function by

Ap(a) = u(EF),

where E¢ denotes the set {x € R™ : [f(x)| > a} with @ > 0 and p the
Lebesgue measure on R™.

Lemma 1.2. For a measurable function f and 0 < p < 0o, we have

17112, = p / A" As(a) dar. (1.1)

Proof. From elementary calculus, we get

£ (@) o0
If(w)I”:p/0 a”_lda:p/o P X (<l f @)y dav-

By integration over R™ and Fubini’s theorem, it then follows

0 0
1A% =p /0 P! (/R X{z:|f(z)|>a} d.’L’) da=p /0 Otp_lx\f(a) da.

a

Hardy-Littlewood Maximal Function

Definition 1.3. For a locally integrable function f € L}, (R™), we define its
associated Hardy-Littlewood mazimal function by

M f(x) = sup !

>0 M(Br(x))/Br(x) |f ()] dy . (1.2)
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Theorem 1.4 (Hardy-Littlewood Maximal Theorem). Let 1 < p < 0o
and f € LP(R™). Then, we have

[Mfller < Clflle (1.3)

where the constant C = C(n,p) depends only on the dimension n and p.
Moreover, for f € LY(R") and o > 0, we have

C
p{z : Mf(z) >a}) < — | fler, (1.4)
where the constant C = C(n) depends only on n.

Proof. In a first step we prove (1.4). — Let Ef;, = {z : M f(x) > a} denote
the set where the Hardy-Littlewood maximal function of f is greater than
a > 0. For z € Ef;, there exists by Definition 1.3 a ball B, (x) with radius
ry > 0 and center x, simply denoted by B*, such that

[ wldy > aus). (1.5

The family 7 = {B* : =z € Ef;} of such balls clearly covers the set
E% ;- Using Lemma 1.5, we deduce the existence of a countable subfamily
{B?*}en of disjoint balls in F satisfying

- xT 1 (o3
ZM(B )= 57#(EMf)~
k=1

Applying (1.5) to each of these disjoint balls, we then obtain

1Pl = [ 1@ldy > Y an(B™) = S ulEfy).

k=1 B k=1

This shows (1.4) with C' = 5".
In a second step, we want to show (1.3). — Since the case p = oo is trivial
with C(n,o00) = 1, we assume that 1 < p < co. For a > 0, let

_ [ f@) i |f(2)] = e/2
hiw) = {0 if [ f(z)| < /2.

Then, we have |f(x)] < |fi(z)] + «/2 and also |M f(z)| < |M fi(z)| + «/2,
for all x € R™. Therefore, we get

By ={x : Mf(z) >a} C {z : Mfi(z) > a/2} = Eyf}. .
Since f; € L*(R™), we can apply (1.4) to f; in order to get

/2 2C
nEs) < —|fillz:
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Thus, we arrive at

N o 2C 2C
WES ) < n(EY) < = filln < = (@) de.  (1.6)
@ @ e |f(z)|>a/2}

Next, we deduce from Lemma 1.2 that

oo
M, = p / " Ay 5(a) da

(1.6) e 2C
< p/ P! (/ |f(x)|dx> do
0 QO Ja:|f(@)>a/2}

. [2C
= p/ ab™! ( - / X{m:f(x)>a/2}|f($)|d$) dov.
0 Rn

Using Fubini’s theorem as in the proof of Lemma 1.84, it follows

207 ()] o1
IMfIE, <2Cp / (@) / dov | dz
Rn 0 @

_2Cp
p—l R»

[f(2)| 2P| f(2) P~ da,

since p > 1 by assumption. Thus we arrive at the desired result

2pCp 1/p
134510 < (2E2) e

O
Lemma 1.5 (Vitali-type Covering Lemma). Let E C R™ be measurable
and suppose that E C |J; B;, where the family {Bj};e is contained of balls

with bounded diameter, i.e., sup, diam(B;) = C < oo. Then, there exists a
countable disjoint subfamily {B;, }ken such that

W(E) < 5" 3" u(By,). (17)
k=1

The Critical Case p =1

We want to emphasize that taking the Hardy-Littlewood maximal function is
not a bounded operation on L!(R™). This can be directly deduced from the
following observation: If f € L'(R™) and f # 0, then M f is not in L*(R™).
To see this, let € > 0 small enough and because f vanishes not identically on
R"™, there exists g > 0 such that

| @lde=e,
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Note that for |z| > 7o, we have B, C Byjz|(x). Thus, it follows

1
M (@) = sup s /B Wl

1
2 (B @) /Bz,m 1wy

Ce
> u(Bz|x|<x>>/B W)l dy =

0

showing that the integrability of M f fails at infinity.

Moreover, even if we restrict our attention to bounded subsets of R™ the
requirement of f (local) integrable is not sufficient for the (local) integrability
of M f. We illustrate this fact by the following example: For n = 1 consider
the positive function

1
)= — o
1(®) t(logt)? X(©.1)>
which is integrable on [0,1/2]!. For t € (0,1/2), let By (t) = (0,2t) and we
have
I
Mf(t) > — ——dt
1)z 2t J, t(logt)?

_ 1N
2t logt

This directly gives that M f is not integrable over the interval [0,1/2].

The next proposition, however, shows that if we impose stronger con-
ditions on f then the local integrability of the Hardy-Littlewood maximal
function M f can be deduced.

1
o 2t(log2t)’

! More generally, for a > 0, we consider the following functions on R™:

1
f(x) = xB; < XBj -
@) = [T Tog(1/Taly™ X** < Tall" [tog Jal] 7= X"

Integration over B/, in polar coordinates gives

1/2 T,n—l
Fz)da < c/ LA
/131/2 (=) o 7" [logr|tte

Introducing the new variable s = |log |, we obtain

e 1
12 [10g(1/2)]

Since 1/(1 4 a) < 1, we deduce that f € L'(B2).
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Proposition 1.6. Let B be a bounded subset of R™ and assume that f €
LlogL, i.e.,

[ 17@log” 7@l do < oc.
RTL
where log™ | f(z)| = max{0,log |f(z)|}. Then we have that M f € L*(B).
Proof. From (1.1), we directly deduce that
IMFlsm) <2 [ Auis(20)da
0

and hence -
Ml < 20(B) +2 [ Ay (20) do. (18)
1

Proceeding as in the second step of the proof for Theorem 1.4, we obtain

o0 (L6) [ [(C
/ Arp(20) da < / */ X{z: |f(@)|>a} | f (@) d2 | do
1 1 « R™

max{L £ @)} 1
— o[ @) / L o) dz.
R~ 1 (0%

A straightforward integration yields

| huseydasc [ (@i @) de.

Inserting this in (1.8), we arrive at

M fllp ) <2p(B) +2C /R |f(2)|1og™ | f(2)] dz, (1.9)

where the right-hand side is finite by assumption. ad

The Calderén-Zygmund Decomposition

Theorem 1.7 (Calderén-Zygmund Decomposition). Let f € L'(R")
with f > 0 and let « > 0. Then there exists a sequence of disjoint cubes
(Crx)ken such that

(i) The average of f on all cubes is bounded from below and above by

1 n
a<'u(0k)/0kf(ac)dm<2 o. (1.10)

(ii) On the complement 2° of the union 2 = J;—, Ck, we have

flz) <a a.e.. (1.11)
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(iii) There exists a constant C = C(n) depending only on the dimension n
such that

p(@) < S fl (112)

Proof. We divide R™ into a mesh of equal cubes chosen large enough such
that their volume is larger or equal than || f||z, /. Thus, for every cube Cj
in this mesh, we have

1
(o) /CO fl@)de < a. (1.13)

Next, we fix a cube Cj in the initial mesh. We decompose it into 2" equal
disjoint cubes with half of the side-length. For the resulting cubes, there are
now two possibilities: Either (1.13) still holds or (1.13) is violated. Cubes of
the first case are the good cubes, denoted by C{, and the bad cubes of the
second case are denoted by C?. In a next step, we decompose all cubes C{ into
equal disjoint cubes with half side-length and leave the cubes C? unchanged.
The resulting cubes for which an estimate of the form (1.13) still holds are
denoted by CJ and the remaining ones by C4. Then, we proceed as before
dividing the cubes C§ and leaving the cubes C5 unchanged. — Repeating this
procedure for each cube in the initial mesh, we can define 2 = Uiozl C} as the
union of all cubes which violate in some step of the decomposition process an
estimate of the form (1.13). (These are precisely those cubes with an upper
index b for bad.)

Note that for a cube C? in C? obtained in the i-th step, we have

H(ézb) . (z)dx > «. (1.14)

Since 2" u(C?) = u(CY_,), where CY_, is any cube in C{_,, we then deduce

1 / 2m
o< —— fle)ydr < —— z)dr <2"a.
M(Cf)) c? (=) #(Oig—l) cd_, (=)

This shows (i) of the theorem.
In order to show (ii), we note that by a variant of Lebesgue’s differentia-
tion theorem (see ) almost everywhere

. 1
@) = s /c fw)dy,

where U, 4 denotes a cube containing x € R™ with diameter d. By construc-
tion of the decomposition, there exists for every = € 2¢ a diameter d, > 0
such that all cubes C,, ¢ with diameter d < dj satisfy an estimate of the form
(1.13). This implies directly that f(x) < « for a.e. z € 2°.

The last part (iii) of the theorem can be established as follows:
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oo

(1.15) 1 1
) =300 "< L [ e < Sl

O

Definition 1.8. Let 1 < p,q < oo and let T be a mapping from LP(R™) to
the space of measurable functions. For 1 < q < oo, we say that the mapping

T is of strong type (p,q) — or simply of type (p,q) — if
ITflle <Cfllze,

where the constant C is independent of f € LP(R™). For the case of ¢ < oo,
we say that T is of weak type (p,q) if

il € R @) > o) <€ (L7l )

where the constant C' is independent of f and a > 0. For q = oo, we say that
T is of weak type (p,0) if T is of type (p, o0).

Remark. For g < oo, we have by Chebyshev’s inequality

al p({z + |Tf(2)| > a}) < ||Tfl7. < (ClIfllee)?,
implying that T being of type (p, q) is also of weak type (p, q).

We also define LP' + LP2(R™) as the space of all functions f which can
be written as f = fi; + fo with f; € LP*(R™) and fo € LP2(R™). By splitting
a function in its small and large parts, one can show that LP(R™) C LP* +
LP2(R"), for p1 < p < pp with p1 < pa.

Theorem 1.9 (Marcinkiewicz Interpolation Theorem). Let 1 < r <
oo and suppose that T is a sublinear operator from L'+ L"(R™) to the space of
measurable functions, i.e., for all f,g € L' + L"(R"), the following pointwise
estimate holds:

IT(f + )| < ITf| + Ty (1.15)

Moreover, assume that T is of weak type (1,1) and also of weak type (r,r).
Then, for 1 < p <r, we have that T is of type (p,p) meaning that

ITFl[er < Cll e
for all f € LP(R™).

Remark. Because of the last theorem and the fact that the Hardy-Littlewood
maximal function is sublinear, we can directly deduce (1.3) in Theorem 1.4
from (1.4) — saying that the operator M is of weak type (1,1) — and the
obvious observation that M is of type (oo, 00).
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Singular Integral Operators I

Theorem 1.10. Let K € L?(R™) and assume the following:

(i) The Fourier transform K of K is essentially bounded by the constant A,
i.e.,

K] < A. (1.16)

(i) The function K satisfies the so-called Hérmander condition
/ |K(z—y) — K(z)|dx < B, for ||yl > 0. (1.17)
2llylI<ll=ll

Moreover, let T be the well-defined convolution operator on L*(R™)NLP(R™),
with 1 < p < 00, given pointwise by

Tf(x)=Kxf(x)= | K(z—y)f(y)dy. (1.18)
Rn
Then, there exists a constant C = C(n,p, A, B) — but independent of the
L%-norm of K — such that

ITfllze < CNlfllze - (1.19)

Remark. a) In the previous theorem, the kernel K is assumed to be in L?(R")
in order to make the convolution operator T well defined on L!(R™)NLP(R"™),
for 1 < p < oco. In fact, by Young’s inequality for convolutions we have

ITfllz> < K2 fllz s

where we are explicitly using the fact that f € L*(R").

b) Note that T is a densely defined linear operator on LP(R™). More
precisely, the operator is well-defined on the dense linear subset L'(R™) N
LP(R™) of LP(R™). Later, from (1.19), we can deduce that T' can be extended
to all of LP(R™) by continuity.

Proof. The proof is divided in the following three steps: First, we show that
the convolution operator T is of weak type (2,2). In a second step, we estab-
lish that T is of weak type (1, 1), which is the most difficult part of the proof.
Finally we obtain the result (1.19) by Marcinkiewicz’s interpolation theorem
and a density argument.

First step: Let L'(R™) N L2(R™), then for the Fourier transform Tf of
Tf € L*(R"), we have

~ — A (1.16)
ITfll> = 1K % fllee = 1K fllze < Allfllz2

Since ||7/‘}||L2 = ||Tf| L2 by Plancherel’s theorem, we then obtain
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ITfll> < Allfllze- (1.20)

This shows that T is of type (2,2), which also implies that T is of weak type
(2,2), i.e.,

2
p{z = |Tf(2)] > a}) < % I£117 (1.21)

Second step: Let a > 0. Then we apply the Calderén-Zygmund Decomposi-

tion 1.7 to 0 < | f| € L'(R™) and . The resulting countable family of disjoint

cubes will be denoted by {Cf }ren and we write £2 = (J;—, C for their union.
Now, we define

f(z) for x € £2°¢
gy=4 1 o (1.22)
W) Jo, fly)dy fo € Cy.

Writing f as sum of a good and a bad function, namely f = g + b, it follows
that b has the following form:

b= bk, (1.23)
k=1

with
1
b () = (f(w) - | dy) (@)

Since by definition of the convolution operator T’
ITf ()| < |Tg(x) + |T0(x)], (1.24)

for all x € R™, we get

p({z o |Tf(x)] > a}) < p({z : |Tg(z)| > a/2})
+u({z : |Th(z)| > a/2}). (1.25)

In order to get an estimate for the first term on the right-hand side of
(1.25), we first claim that g is an element of L?(R™). — From |g(z)| < a for
x € 2° we get

lgll72 =/QC |9($)\2d$+/g|g(m)\2dx
= [ alat@lde+ [ Jala) de. (1.26)

and the second term on the right-hand side can be bounded due to (1.10) by
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1
INCREE i INCRE
1.22) == 2
(g);/()k (@/Cku(x)mx) dx

1

< 3 (2"a)? dx = C ?u(2). (1.27)
A :

Inserting this into (1.26) and using also (1.12), we arrive at

lgll7= < el fll + Ca®u($2)
<alfle +Callfll < (C+Dalflw,

showing the claim. As a consequence, we can apply (1.21) to g € L?(R") in
order to get the following estimate for the first term on the right-hand side
of (1.25):

ule + ITo(a)| > a/2)) < Sl
< 1l (1.25)

Next, we want to obtain an estimate for the second term on the right hand-
side of (1.25). — For this purpose, we expand each cube Cf in the Calderén-
Zygmund decomposition by the factor 2/n leaving its center ¢, fixed. The
new bigger cubes are denoted by Cy and its union by 0= Ure, Cr. Tt is
easy to see that 2 C 2, 2° C 2° and u(2) < (2y/n)" u(2). Moreover, for
z & C,, we have

|z —crll > 2[ly — ckll s for all y € Cf. (1.29)

Now, let ci denote the center of the cube Cf. Then, we can write

oo

K(x —y)be(y) dy
k=17 Ck

S [ (K=~ K=,

Th(x) = Z T ()
k=1

being a direct consequence of the fact that for all C

/Ck bk(y)dy/Ck <f(y) u(lck) /Ck f(z)dz) dy =0.

This then leads to
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/{ |Tb(x)| dx < i/ ( Ck|K(a: —y) — K(z —c)| Ibk(y)]dy> de

k=1

< 3 /( Ck‘K(m—y)—K(m—ck)‘ |bk(y)\dy> dz

k=1 k
:;/Ck ( OE|K(x—y)—K(m—ck)|dx> |br(y)| dy -

Setting £ = = — ¢, § = y — ¢, and using (1.29), the integral in parenthesis
becomes

~ yK(x—y)—K(x—ck)\d:cg/ K@ -y) - K()|dz.
o 2|7l <zl

The assumption (1.17) of the theorem, then implies that

Tb d B b d C 1. 1.30
[, ol <83 [ s < il (1.30)

At this stage, we are ready to give the following estimate for the second
term in (1.25):

p({r € R™ : [Th(2)| > @/2}) < p({z € Q°: |Th(z)| > a/2}) + u(2)

(1.30)
< 2+ vy ()

(1.12) 20 C C
s 1l + . [fllze < o 1l
(1.31)
Combining (1.28) with (1.31), we end up with
C
p{z = ITf @) > a}) < — [ fllre (1.32)

showing that the convolution operator T is of weak type (1,1).

Third step: Note that we have already shown the inequality (1.19) in the
case of p = 2 in (1.20). — Putting r = 2 in Marcinkiewicz Interpolation
Theorem 1.9 and using the fact that T is of weak type (1,1), respectively
(2,2), by (1.21), respectively (1.32), we conclude that

ITflle < CllfllLe, (1.33)

for1<p<2.
For the case 2 < p < oo, we will use a duality argument. — Consider
the dual space LI(R™) of LP(R™) with 1/p + 1/q = 1. We easily see that
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1 < ¢ <2 Now, let f € LY(R") N LP(R"), then the LP-norm of Tf is given
by the following expression:

ITfll» = sup

geLtnL?
llgllra <1

/n Tf(z)g(z)dx| . (1.34)

We calculate

[ Tr@gta)da

/n ( - Kz —y)f(y) dy> g(x) da
/ " ( L K E=y)9(@) dw) ) dy‘ ,

where Fubini’s theorem was applied because of K € L?(R") and the assump-
tions on g and f. For the first integral, we conclude? from (1.33) that it is an
element of LP(R™). Using Hélder’s inequality, we end up with

< [

(1.33)
< Cliglleallflle < Clfllee -

sup
geLNL?
llgllza <1

| i@t ds

< - K(z—y)g(x) dw) f(y)‘ dy

This establishes the theorem. O

Singular Integral Operators II

We generalize Theorem 1.10 in the sense that now the L?-boundedness of the
convolution operator T follows from conditions imposed on the kernel K and
not directly from the assumptions.

Theorem 1.11. Let K : R® — R be a measurable function such that

A
|K (z)| < Tl for ||z|| > 0. (1.35a)
/ K(z—y)—K@)|dz<B . for |yl >0. (1.35b)
2[ly[I< ]|zl
/ K(z)dx =0, for 0 < Ry < Ry < 0.
Ri<||z[| <Rz
(1.35¢)

Fore >0 and f € LP(R™) with 1 < p < 00, we set
= [ se-pKwa. (1.36)
Yyll=€

2 That the kernel K (z) is replaced by K (—z) has no significance.
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Then, we have
1T fllr < ClIfllze (1.37)

where the constant C' is independent of € and f. Moreover, there exists Tf €
LP(R™) such that

T.f—Tf in L? (e —0), (1.38)
for all f € LP(R™).

Remark. The singular integral defined in (1.36) is absolutely convergent. To
see this, note that due to (1.35a) we have that K € LP (R" \ B.), where
1 < p’ is the Holder conjugate exponant of p. From Young’s inequality, it
then follows that ||7% f|lco < || fllze | K|l L0

Proof. For every € > 0, we define

K(x) if ||z >e€
Ke(z) = {0 if ||z <e. (1.39)

We observe that K. € L?(R") and that the Hérmander condition (1.35b)
also holds for K.. Moreover, we will show in Appendix 1.84 that

1K < C, (1.40)

where the constant C' = C'(n) only depends on the dimension n and not on ¢.
Applying Theorem 1.10 to the kernels K., ¢ > 0, we obtain (1.37) as direct
consequence, since

T.f(z) = A [l —y)K(y) dy.
In a next step, we fix a function f € C(R") and write

T.f(z) = / K@y / fx— 9K () dy

<llyll<t

Rn

— [ fe-pE)dy+ / o UG = F@) ) dy
o (1.41)

Note that the cancellation property (1.35¢) is used for the second term on the
right-hand side. Because of the regularity assumptions on f, we can apply
the mean value theorem in order to get the existence of a constant C' such
that

(1.350) (' A

|(f(z—y) — f(@)K@)| < Cllyll 1K(y)| < Tol=1 (1.42)
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for all z € R™. This being integrable for y € By C R", we deduce by domi-
nated convergence theorem for the second integral on the right-hand side of
(1.41) that

lim (Ho =) = F@)K ) dy = [ (1) - £(a)K(w)dy,
e eIyt lyll<1
(1.43)
for all x € R™. At this stage, we can define
Tf(z) = lim T, f(z) = - fle—y)K(y)dy, (1.44)

for all z € R” and f € C}(R").
Writing (1.43) as lim._,0 g () = g(x), we directly deduce that

p

|9: (@) —g(2)[" — 0 (¢ —0),

for all € R™. Consider now the compact set S = {z € R" : dist(K,z) < 1}
with K the support of f € C}(R"), we obtain?

oo < xs@) [ 1) S@IIK W)y

(1.42) 1
< CAXs(fC)/B WdySCXs(fE)-

The right-hand side being independent of € and integrable over R", we con-
clude that

9= () — g(x)|” < C (|g=(@)” + |g(x)|P)

is still integrable. Thus, we can apply dominated convergence to arrive at
[ o)~ g de—0 ¢ —o0).
]Rn

On the other hand, the first integral in (1.41) is an LP-function for p > 1.
To see this, note that Young’s inequality implies

[ f* KillLe < [ flloel[Kallze,

since f € LY(R") by assumption and Ki(y) < A/|ly||", for |jy| > 1, is an
LP-function for p > 1. In summary, it then follows that

17f =Tl = [ o) = 9@ de—0  ¢—0),  (14)

3 Here we use also the fact that the constant C in (1.42) is independent of x, since
f is compactly supported.
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for all f € CH(R™).

For general f € LP(R™), we know that, for every ¢ > 0, there exists by
density h € CH(R") such that ||f — h|» < 6/3. Moreover, due to (1.45),
there exists mg € N such that ||T., h — T, k| Lr < §/3, for every m,n > mg.
It follows that

||Tsmf - Tenf”LP < ||Temf - Temh”LP + HTemh - Tsnh”LP + HTEn,h - TsanLP
(1.37)
< Clf =hllee + |1 Te,,h = T, bl e + Cllh = fllr < C6.

Thus, the sequence (7% f)-0 is a Cauchy sequence and converges in LP. More-
over, we denote the limit by T'f € L?(R™) showing (1.38). — Note also that

. (1.37)
ITfle = lim | Tof e < Cflleo-

Calderon-Zygmund Estimate for the Laplace Operator

From the previous theorem, we can now deduce the important so-called
Calderon-Zygmund estimate for the Laplace operator. — Consider first the
fundamental solution of the Laplace operator given by
B 1 1
(2= n)wn [|zf"2

I'(x) (1.46)
where w,, is the volume of the n-dimensional unit ball and the dimension n is
assumed to be larger or equal than two. By a straightforward computation,
the first and second order partial derivatives reads as

1 i
Oul(w) = ”;’”n : (1.47a)
0,00 () = (||x”265||n_’§ 0 (1.47b)
leading to the following estimates:

0: ()] < C”x”%, (1.48a)
10,0:(z)] < C W . (1.48D)

Next, we define for i, j = 1,...,n the kernels
K;j(z) = 0;0;I'(x) . (1.49)

We claim that these kernels verify the hypothesis (1.35a)—(1.35¢c) of The-
orem 1.11. — In order to see this, we first note that by a simple calculation
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1
0 K;j(z)| < C =5 -
0K ()] < € i

Since the kernels K;; are smooth on R™\ {0}, the mean value theorem implies

that
Clyll

]+t

|Kij(z —y) — Kij(z)| <
Integration in polar coordinates then gives

1
T Py < B,

/r’I'L

[ IRy —w - K@l <Clyl [
2llyll <l 2llyll

showing that the Hérmander condition (1.35b) holds for K;. For the cancel-
lation property (1.35¢), assume first that ¢ # j. Then, we have

R2
. 1
/ K;j(z)dx (1.476) C / — (/ T da(m)) r"Ldr.
Ri<||lz[|[<R:2 R, T §n—1

This vanishes since the integral in parenthesis is zero. In the case of i = j,
we observe that

2 2

ATb :

/ K;i(z) dx (1.478) / lzll” = nag nixl dx
Ri<||z]|<R: Ri<|[z||<Rs [Eal

2 _ 2
= / 7||x|| n_nle dx :/ Ky(z)dx.
Ri<llzl<r, |12l Ri<|lzl|<Rs

Hence, we obtain that, for all i =1,...,n,

Ri<|[z||I<R2 Ri<||z||<R2

The right-hand side being zero, we have thus shown that the cancellation
property (1.35¢) holds for the kernels K;;. Because of (1.48b), the hypothesis
(1.35a) also holds and the claim follows.

Take now f € C(R") and define for ¢ > 0

i@ = [ fla-p)K) dy. (1.50)
llyll>e
From Theorem 1.11, we then deduce that
ITflle < ClfllLe, (1.51)
where 1 < p < oo and
Tf(x) = lim T:f(z) = (z —y)Kij(y) dy,

Rn
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for all x € R™ (see (1.44)).
In a next step, we consider u € C3(R™) and the function f such that the
Laplace equation

Au=f on R"

holds. Obviously, we have that f € C}(R™). The function u can be expressed
with the help of the fundamental solution (1.46) as

u(w)= [ Py iwdy +g(e).

where ¢ is an harmonic function on R™ which must tend to zero at infinity.
By Liouville’s theorem this implies that g must be identically zero. Moreover,
we have that

ddyu(x) = | 9:0,0(x —y)f(y)dy, (1.52)

R™

for all ,7 = 1,...,n. For a proof of this we refer to []. Observing that the
right-hand side of (1.52) is precisely the LP-function T'f, we conclude that
(1.51) translates to

10:05ull e = 1T fllr < ClfllLr = CllAul| Lo, (1.53)

for 1 < p < oo. — For a general u € W2P(R"), there exists by density a
sequence (ug)gen in C2(R™) such that u, — u in W2P, for k — oco. From
this, we deduce that

(1.53)
|D?ul|Lr = lim ||D?*ug|lpr < lim C||Aug|rr = C || Aulzs -
k—o0 k—o0
In summary, we thus end up with the following Calderén-Zygmund estimate

for the Laplace operator:

Theorem 1.12. Let u € W2P(R"™). Then, for 1 < p < oo, we have
| D*ul|r» < C||Aul|Ls - (1.54)

Example 1.13 (Counter-Ezample for L'). On R?, we consider the function

1
 Jlzll? log(1/[l])?
being integrable over the disc D;/,. We want to determine the function u

which solves Au = f on R2. Since f is radial, we can assume the same for u
implying that the Laplace equation reads in polar coordinates as

f(z)

1

" 1, o
wir)+ e (r) = r2 log(1/r)2"

Equivalently, we have
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(Y () = s
r2 log(1/r)?"
Integration gives u/(r) = 1/(r log(1/r)) and a easy calculation

1 1
2 log(1/7) + r2 log(1/r)?"

u'(r) =
The first term, however, is not integrable over Dy 5.

Singular Integral Operators II1

Next, we consider kernels K of the form

K(z) = 22) (1.55)

(e

where (2 is an homogeneous function of degree 0, i.e., 2(dz) = 2(x), for 6 > 0.
In other words, the function {2 is radially constant and therefore completely
determined by its values on the sphere S"~!. Note also that K is homogeneous
of degree —n, i.e., K(dx) = § " K(z). — The following proposition shows how
the conditions (1.35a)—(1.35¢) on the kernel translate to kernels of the form
(1.55).

Proposition 1.14. Let K : R® — R be a measurable function given by
K(z) = 2(x)/||z||™ with 2 an homogeneous function of degree 0 such that

(i) The following cancellation property holds:

/ 2(z)do(x) =0. (1.56)
Sn—l

(i) If we set

w(d) = sup [2(x) - 2(y)
lz—yll<é
x,yeS"*l

b

the following integral is finite:

Al“’?d5<oo. (1.57)

Then K satisfies the conditions (1.35a)—(1.35¢).

Remark. a) Note that if (2 is Lipschitz on S"~!, then w(d) < C§ and the
so-called Dini-type continuity condition (1.72) is full-filled. The same is true
if £2 is assumed to be Holder continuous with exponent v on S~ ! since then
w(d) < CH.

b) From the proposition, we conclude that Theorem 1.11 holds for kernels
of the form (1.55) satisfying the two conditions (1.71) and (1.72).
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Proof. The conditions (1.35a), respectively (1.35¢), follow directly from (1.72),
respectively (1.71) and integration in polar coordinates.
In order to establish (1.35b), we first observe that

Qe —vy)— 1N
[ Gy - K@) i < 2@y — )],
20lyl<|le| S l|lz — vyl
1 1
+ Q2(x — dx .
/ LN =~ el
2y <]z ]|
(1.58)

Since (2 is bounded due to (1.72) and as a consequence of the mean value

theorem
1 1

[ =yl™ [l

Cllyll
I

we conclude by integration in polar coordinates that the second integral on
the right-hand side of (1.73) is finite. Note also that

|”“‘”‘”“”:P<@:%)‘”(@O‘

= ([=3-al)

e =yl |
by definition of the function w. Moreover, if 2||y|| < ||z, then 1/]jz — y||™ <
C/||z||™ and also

‘ z—y x
lz =yl ll=|

Inserting these estimates in the first integral on the right-hand side of (1.73),
we obtain

B

<ol

[lyll
2 —y)— 1 “ A Tell
26—y -2, _, ()
[l =yl [l
2llylI<ll=|l 2llyli<l=|l
Iyl
o w [ =L
<C (n) dr.
2yl "

Changing coordinates ¢ = C||y||/r and using (1.72), we deduce that the last
integral is finite showing that (1.35b) holds. O

Ezample 1.15 (Riesz Transform). For j =1,...,n, we now consider the ker-
nels K;(z) = 2;(z)/|z||™ with

T
Qi(z) = Cp —L 1.59
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where C,, =. It is easy to check that §2; is Lipschitz on S"~! and since (2; is
an odd function the cancellation property

/Sn_1 Q2;(x)do(z) =0

also holds. For f € LP(R™) with 1 < p < oo, we then define the Riesz
transform by
R;f(z) = lin}) R, f(x), (1.60)
e—

where

R;.f(x) = / W

y
e Cn/ f xr — y 7J dy .
i T

Note that the limit in (1.75) exists almost everywhere because of Theorem
1.17 below. Moreover, Theorem 1.11 implies that

1R fllze < C I fllzr (1.61)

for f € LP(R™) with 1 < p < co. Computing the Fourier transform of R; f,
we obtain (see [])
_ &g

el

Now, we want to show that the Calderén-Zygmund estimate for the
Laplace operator in Theorem 1.12 can also be established with the help of
the Riesz transform. — For this purpose, let f € C?(R"™) and note that the
Fourier transform of its second order partial derivatives are given by

0:0;1(€) = (16)(i&;) f(§) = ~€:&; 1(©).
In particular, we have for the Fourier transform of the Laplace operator
Af(€) = —||&||* f(€). This enables us to write the following:

R;f(€) ©). (1.62)

GOFE) = & f(€) = H fﬁ @ A1)
4z @R@)@) U1 (Ry(Ry(AF) (©).
Thus, we get
9;0;f = Ri(R;(Af)) . (1.63)

From (1.61), it then follows that

10:0; fll e = || Ri (R (AN | 1.
< C|Rj(AN|lr < CAf]Le

for 1 < p < oo. Finally, by a density argument we recover (1.54).
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The Critical Case p =1

We want to emphasize that the singular integral convolution operator 7' is not
bounded on L*(R™). This is confirmed by the following observation: If 0 < f €
LY(R") and f # 0, then Tf ¢ L'(R™). — To see this assume by contradiction
that Tf € L'(R™). Hence, its Fourier transform ZI/’} must be continuous.
Since 0 < f € L'(R™) and f # 0, note also that f(0) = ||f]|z: > 0. On the
other hand, we know /tllat T can be realized by an homogeneous of degree
0 multiplier m, i.e., Tf(€) = m(£)f(€). Consider, for example, the Riesz
transform R;f with multiplier given by the right-hand side of (1.76). Since
m is obviously not continuous at 0 and f (0) > 0, we conclude that 7/“} is also
not continuous at 0 being a contradiction to the assumption T'f € L1(R").

However, as in the case of the Hardy-Littlewood maximal function, there
is the following refinement:

Proposition 1.16. Let B be a bounded subset of R™ and assume that
[ 1@+ 108" 17 @)]) do < 0.

Then we have that Tf € L*(B).

In order to prove this proposition, several estimates in the proof of
Theorem 1.10 have to be formulated slightly differently. — Consider again
0 < |fl] € LY(R™) and a > 0 with the corresponding Calderén-Zygmund
decomposition. Then, we introduce the positive function

go- {1 gz oo

This enables us to write, using the definition (1.22) for the function g,

[ la@Pas+ [ o) s
= [ (@) de /Q l9()? da

(157) / (X?c‘(x))Q dx + Ca?u(R). (1.65)

lgllZ-

Thus, it follows that (compare with (1.28))

p{z = [Tg(x)] > a/2}) < %Hg\\%z
< % - (X‘Ji‘(x))2 dx + Cu(2).  (1.66)

Moreover, we put (1.30) in the following form:
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[|Tb<x>\dx < Bg/c b ()] dy

£2¢

< B/Q(If(y)|+|g(y)|)dy
“Eop [ (slay < 2B2an(e).
2

This then implies that (compare with (1.31))

p({z € R+ |Th(x)| > a/2}) < p({z € 2° : |Th(x)| > a/2}) + p(2)
<4AB2"u(2) + (2v/n)" u(£2)
<Cu(). (1.67)

Combining (1.66) with (1.67), we end up with
p{z = [Tf(x)] > a}) < p{z : [Tg(x)] > a/2}) + p({z : [Th(x)] > o/2})
(x3(2))? dz + C () (1.68)

O[2 Rn
Now, we are ready to give a proof of Proposition 1.16.

Proof (of Proposition 1.16). The proof will be similar to the proof of Propo-
sition 1.6. — We already know that

1T fllz By < 1(B) +/1 Arg(a) de.

Inserting (1.68) for Ars(«), we deduce that

C

o0 o 9
ol <um+ [ (S [ () ar) da
1 n
—|—C’/ w(2y) da (1.69)
1
where we changed slightly the notation for the cubes of the Calderén-
Zygmund decomposition in order to emphasize that they depend on «.

Next, we compute the first integral on the right-hand side of the last
equation

/100 <§; / (X?(x)fdx) o2 / </o|f(z)|da+/|:z>| 0}2|f(x)2da> “

= C/ (If @)+ [f(@)]) de =2C]|f]|L -
R™

O
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In Theorem 1.11, we have shown that the singular integral operation
Tf =1lim._,T.f exists in the sense of LP-convergence. The existence of this
operation also in the sense of convergence almost everywhere is guaranteed
by the next theorem.

Theorem 1.17. Let K : R®™ — R be a measurable function given by
K(x) = Q(x)/||z||™ with £2 an homogeneous function of degree 0 satisfying the
hypothesis of Proposition 1.14. For e > 0 and f € LP(R™) with 1 < p < oo,

we set
_ o — oy 2)
T.f(z) = /| e, (1.70)

where the integral on the right-hand side is absolutely convergent for every x.
Then, we have that lime_o T f(x) exists for a.e. x € R™.

Remark. In the case of f € C}(R"), the statement of the theorem was already
an intermediate result in the proof of Theorem 1.11 (see (1.44)) and will be
also needed to show the present general case.

Proof. a0

Fractional Integral Operators

Recall that for f € C}(R™) the function

u(z)

[ re-wiwa
e [ s W)

n(2—n)wn Jen |z —yl"?

lies in C?(R™) and satisfies Au = f. We also say that u is the Newtonian
potential of f. Recall that its Fourier transform reads as

a(€) = —lEl?f(©). (L.71)

More generally, for 0 < a < n, we define the formal integral operators

1 1
1f@) = == | oy, (172

where y(a) =. These will be called Riesz potentials of f or fractional integral
operators. Note that in the case o = 2, we recover the Newtonian potential
in the sense that formally AL, f = f or equivalently Iy f = A~'f. If f is now
assumed to be a Schwartz function, then the following equality in the sense
of distributions holds for the Fourier transform of the Riesz potentials:

I f(&) = llEll= (). (1.73)
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Comparing this with (1.71), we can roughly speaking say that the Riesz
potential I, defines negative fractional powers of the (negative) Laplace op-
erator. We can write formally I, f = (—A)~*/2f.
Next, we want to study the behavior of the Riesz potentials on LP-spaces.
— Assume that they are bounded from LP(R™) to L4(R"), i.e., for 0 < a < n,
we have
HafllLe < ClfllLr

For such an estimate to be true, the exponent ¢ cannot be arbitrary due to
homogeneity considerations. More precisely, since (Iaf)é(w) = 0% 1, fs(x),
where fs(x) = f(dzx) denotes the function rescaled by §, we get

Hafslle =8~ (Lo f)slle = 67 Laf s -

Applying (1.73) to the rescaled function fs, it follows that the exponent ¢

must satisfy
1 1 «

Z—-_Z= 1.74
< » n (1.74)
Theorem 1.18 (Hardy-Littlewood-Sobolev Theorem for Fractional
Integration). Let 0 < o < n. Then, we have the following three statements:

(i) For f € LP(R™) with 1 < p < n/a, the singular convolution integrals

1 1
d
v(@) /Rn |x—y||n—af(y) y

converge absolutely for almost every v € R™.
(i) Assuming that 1 < p < n/a, there exists a constant C = C(n,p,q) such
that

Mo fllza < Cllfllze, (1.75)

where the integrability exponent q is given by (1.74).
(iii) If f € LY(R™), we have

. C f . n/(n—a)
p({z € R™ : I f(x)] > A}) < (”A”L> : (1.76)
for all X > 0. In other words, the singular integral operators I, are of

weak type (1,q) where 1/q=1— a/n.

Proof. First, we define K(x) = 1/||z||*~® and hence

/R L fy)dy =K ().

n o=yl

We decompose the function K as a sum of an L'-function K; and a bounded
function K, given by
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(K@ ] <e
K@) = {o if [|zl] > e,

respeCtiVGIY7 by f || H
0 if ||z|| <e
Koo(z) = {K(x) if Jlell >,

In the decomposition K = K7 + K., we have
K f(z) = Ky % f(2) + Koo x ().
Young’s inequality then implies that
1K1 fllpr < Kol fllze

for all f € LP(R™). Denoting by p’ the Holder conjugate exponent to p, we

observe that ,
/ 1 p
5l = [ (o)
Ly Jz>e \llz[|"~

is finite, since from the assumption p < n/a it follows n/(n — «) < p’. Using
for the second convolution K., * f again Young’s inequality, we deduce

1K % fllpee < (Ml L f e s

showing the first statement (i) of the theorem.
Let > 0 and conclude from Hélder’s inequality that

1 [} 1 p’
—— dy < C | fllpr ety
/Iy—a:|za [z — y|["—e [f)ldy < Cflz (/5 (rn_a) r r)

= C||f|| oo ®/P)

1/p’

where r = ||y — z||. Here we used that p < n/a. Using (1.79a) in Lemma 1.19
below, we then obtain

Laf(@)] < C(8° M f(@) + | f|r0° =) (L.77)

In order to minimize the right-hand side, we choose

= ()

Inserting this in (1.77) gives the so-called Hedberg inequality

I f(@)] < C Mf(a) =/ fl|oe/m, (1.78)

and also
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[T f(z)]? < OMf(x)p”fH(LO;np/n)q-

Integrating over R™ and using the Hardy-Littlewood Maximal Theorem 1.4,
we arrive at

/ Lo f ()| da < C || f|(cP/ma / M () du
R" R"
= CIfISE 1),

Thus, we end up with
o flle < CfllLe

for 1 <p<n/a. O

Remark. Take a kernel K € L"/(n=) (R™). Then Young’s inequality implies
that

IK % fllea < (1K1, oog [ fllEe
where

1 n—« 1 1 «

- = +-—1=—-——.

q n p p n

Note that ¢ equals ¢ defined in (1.74). — The singular kernels K defining
the Riesz potentials, however, miss barely the regularity condition of being
L/ (=) _functions and thus Young’s inequality does not directly lead to the
estimate (1.75).

Lemma 1.19. Let 0 < o < n and 6,08 > 0. Then, for all x € R™, we have

/I I<s W'ﬂ y)ldy < CO* Mf(z), (1.79a)
y—x

1 C
/Ily—mza oy /Wl dy < 55 Mf(@). (1.79D)

Proof. We decompose the domain of integration in the following way:

1
oyl =3 | Wl dy.
/Hy 2||<s ||$*y||" o Z 52~ (D <[ly—af<s2—+ T =yl

Then, we compute

1 OO
el < () / dy
f s Ty 2\e1) e Y

S0 (2L, e

The right-hand side can be written differently as
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1 a—n o0 1 [e3 1 5 —n
QB @), o
2 kZ:O 2k | w, \ 2k By (z)
Using the Definition 1.3 of the Hardy-Littlewood maximal function this is

bounded by
N 1 a—n o0 1 (o3
wi (3) X (5) s,

k=0
showing (1.79a). O
The critical cases p =1 and p = n/a

In the case of p = 1, the exponent ¢ equals n/(n — «) and we assume by
contradiction that the following estimate holds:

Mo fll, z2s < Clfllzr- (1.80)

n—

Next, let (px)ren be a mollifying sequence, i.e., the supports of the smooth
functions py converge to the origin and ||px||;r = 1, for all ¥ € N. From
(1.80), it then follows that

Haprll, 2e < C,

n—a —

for all k£ € N. Moreover, since pj i dp in D', we have that

1 1

@ e e

Topr(z) —
for all z # 0. Applying dominated convergence, we conclude

<C.

H 1 1
s

V(@) [|l]m=e

This implies that the function [|z||~™ must be integrable over R™ which is

obviously false. Thus the starting assumption (1.80) can not be true.
In the case of p =n/a, we get ¢ = co. For € > 0, consider the function

1

T = ol Toga ey e X2

It is not difficult to check that f € L™/®(R™). However, because

1
Iaf(O) - / @ dya
By, [yl log(1/]yl)) = 1+

we deduce that the boundedness of I, f fails near the origin if & (1 + e) <1
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Theorem 1.20 (Sobolev Embedding Theorem). Let 1 < p < o0, k a
positive integer and

1 1 k

g p n
Then, we have the following three statements:

(1) If in addition p < n/k, the embedding
WkP(R™) C LI(R™)

is continuous. In the particular case of k = 1, there exists a constant
C = C(n,p) such that

Ifllze < ClDflze, (1.81)
for all f € WHLP(R™).
(i)
(iii)

Remark. Theorem 1.18 can be interpreted as potential theoretic version of
the Sobolev embedding theorem. Note that the latter is however also true for

p=1

Proof. First, we consider the case k = 1. — Suppose that f € C}(R") and
fix some x € R™. Moreover, consider the curve v : [0,00] — R"™ given by
~¥(r) = & + r @ where § € R" is such that ||f|| = 1. Then the integral of the
gradient V f of f over the curve v equals

| vi6m) A= [T ier 0 00— i), (8
0 0

since f has compact support by assumption. Integration over the unit sphere
S"~1(x) centered at x leads to

flz)=-— ! ) Oon(errG)-Hdr do(0).
Wn—1 Jgn-1(z) \Jo

This can also be written as

1 @ oo
f(z) Wt ;/Snl(@ (/0 0if(x +r6)o; d?") do(0)
1L ot )
i Lo, (A i) a0

Next, we pass to rectangular coordinates y = x 4 r 6 implying that

R ol AN S DP
0= 5 3 [ o . (18
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As direct consequence, we then have

|<02/n” 0Ll dy

<C Zfl(|aif|)(x)' (1.84)

i=1

At this stage, we can apply Theorem 1.18 in the case o = 1, in order to
obtain

£llze <C D N (10:f)llea < C Y 110if |l (1.85)

i=1 i=1
for 1/g = 1/p — 1/n. The right-hand side being obviously bounded by the
WhP-norm of f, the estimate (1.81) follows in the case of f € CL(R"). O






Before giving a detailed proof for the boundedness of the Fourier transform
of the truncated kernels satisfying the three hypothesis of Theorem 1.11, we
illustrate in the one-dimensional case how the boundedness fails if one of
these hypothesis does not hold.

a) Consider the kernel K (¢t) = 1/|t| and denote its truncation at € > 0
by K. (see (A.6) below). It is not difficult to check that the Hormander
condition (1.35b) holds for K. The cancellation property (1.35¢), however, is
not satisfied.

As shown in (A.8) below, the Fourier transform of K. is given for a.e.
£ eR by

lim e VK (t) dt

k—oo [7,’%’,’%]

Kc(¢)

e 1
lim e M dt. (A1)
k=00 Jo<|t|<r, |t]

Next, we compute

I/(\s(f) lim cos(&t) — 4 sin(&t)
k—oo e<|t|<rk |t‘
lim cos(&t)
k—o0 e<|t|<rk |t|

rxl€l

dt

dt

cos(s)

s=Et .
=" 2sgn(&) lim
k—o0 el S

ds. (A.2)

Thus, we have to calculate an integral of the form f5 oo cos(s)/s ds. For this
purpose, the following decomposition is suitable:

0o w/4 /2 0 (k+1)m+7/2
/ cos(s) ds:/ cos(s) ds+/ cos(s) ds—i—Z/ cos(s) s
) S 5 $ /4 $ k=0’ kmtm/2 S

(A.3)

For the first integral on the right-hand side, we have

/4 /4
/ cos(s) ds > \@/ lds,
5 2 Js s

S
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which is logarithmic divergent in §. The third integral on the right-hand side
of (A.3), however, is convergent as monotone decreasing alternating sequence.

b) Now, we consider the kernel K(t) = 1/t. In opposite to the previous
example a), the cancellation property (1.35c) is now also satisfied. Proceeding
as before, we obtain (compare with(A.2))

g Telél
Ro(€) = —2isgn(e) m [ 520

k—oo el S

S .

This integral, being of the form [ sin(s)/sds, can be splitted into

/600 sin(s) s — /6” sin(s) s i /k(k+1)7r sin(s) s (A4)

S S S
k=1"YFT

Since the function sin(s)/s is continuous at zero, the first integral converges.
The same holds for the second integral, by the same argument as before. — We
have thus established that the Fourier transform of the kernel b) is uniformly
bounded.

Remark. Roughly speaking, we can observe that the Hormander condition
full-filled by both kernels a) and b) ensures the convergence of the integral at
infinity, whereas the cancellation property — only satisfied by the kernel b) —
is responsible for the convergence at small distances.

Lemma A.1. Let K : R™ — R be a measurable function such that

A
|K(z)| < B for |jz|| > 0. (A.5a)
/ K(z—y) - K@|de<B . for |ly]>o0. (A.5b)
2[ly[I< |||l
/ K(x)dz =0, for 0 < Ry < Ry < 0.
Ri<|lz[| <Rz
(A.5¢)

Moreover, for every e > 0, we define

_ K@) izl =e
Ke(z) = {O if |zl <e. (A-6)

Then, there exists a constant C = C(n, A, B) such that
1Kl < C. (A7)

Proof. We first proof the lemma for the particular case ¢ = 1. — Note
that because of (A.5a), the truncated kernel K is an L?-function. Defining
K7 (z) = Ky(x)xB, (), dominated convergence implies that K] —> K, in
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T —00

L2. By continuity of the Fourier transform, we also have that I/(\{ — I/(\l in
k—o0

L?. Hence, there exists a subsequence (K;*)ren such that K{*(£) "— K, €),
for a.e. £ € R™. More precisely, since K| are L!-functions having an integral
representation for their Fourier transform, we have

lim [/(?“(f) = lim e K (2)xp, () do

k—oo k—oo Jrn

Jim e K (2) da = Ky (€), (A.8)
— 00 BT‘k

for a.e. £ € R™.
In a next step, let z € R” and fix £ € R”™. Consider then the function!

g(r) =

/ e VK (z — 2) do — / e VUK (z — 2) da
B'V'

By (z)
S/ |Ky(z— 2)|da.
B, AB,(z)

For r > ||z||, it is not difficult to check that the symmetric difference
B, AB,(z) is contained in an annulus with radii » — ||z]|/2 and r + ||2||/2.
Hence, there exists a constant C such that

1(BrAB,(2)) < C||z]lr™ . (A.9)

This estimate becomes obvious for r < ||z||. Moreover, in the case of r > 2]|z||,
we have

B,AB,(z) CR"\ B, 5(2). (A.10)
Thus, for every x € B, AB,(z) with r > 2|z||, it follows

(A.5a) A (A10) A
K - < < .
N P T

From this it follows that

lim g(r) < lim |K1(z — 2)|da
r—00 r—00 B, AB,(2)
A (A.9) n—1
< lim A i orac EITT
r—c0 Jp A,z (1/2)" r—00 r
More explicitly, the last result can be written as
lim e 'K (x — 2)dx = lim e VK (z— 2)dz. (A1)

r— /B, 1= JB,(2)

! As usual, we denote the symmetric difference E\ F U F \ E of the two sets E
and F' by EAF.
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Next, setting w = x — z and using (A.8), we obtain that

lim e 'K (2 — 2)dr = lim e % / e "SR (w) dw
B

k—oo Br, (2) k—oo

— e (€),

Tk

for a.e. £ € R™. Inserting this in (A.11), we arrive at

lim e VK (2 — 2) dr = e_iz'élf(\l(f) . (A.12)

7—00 B
[d

In particular, for every £ € R™, choosing

§
=T —— A.13
HE (A13)
such that e *#¢ = —1, it follows
lim e R (2 — wE)|1€)]?) da = — K (€). (A.14)

k—oo B,
k

Combining (A.8) and (A.14), we end up with the following expression for the
Fourier transform of Kj at a.e. £ € R™:

Ri© = Jim o [ e [Ki(w) - Kilo - me/lE?)] de. (A15)
Ly

With the help of the previous formula we will now show that I/(\l is uni-
formly bounded on R™. — For this purpose, we first separate the integral on
the right-hand side of (A.15) into two integrals I; and I given by

n- | e Kuw) - Ko - me/€)] o
o< lzll<2m /1€l
respectively, by
- [ (K1 (@) - Kl - me/€]7)] do
2r /€l ]Izl <ri
From the Hérmander condition (A.5b), we directly deduce that
bg/ Ky (@) — Ky (2 — 7 €/)1€)2)] da < B,
2n/|IElI<l=]l

showing the boundedness of I5. — It remains to give an upper bound for I
which is independent of &.
We write the integral I; as



L =1s—14

- / e~ K (z) do — / e K (o — e )||€))?) da
o<zl <27/ ||€]| o< |l <27 /]| €]|

Obviously, by definition of K in (A.6), we see that I3 = 0 if 27/||¢|| < 1. For
the other case 27/||£|| > 1, the cancellation property (A.5c¢) implies that

/ Ki(z)dx =0.
1< |zl <27/l€]l

This enables us to rewrite I3 as
I — / %€ — 1]y (x) de. (A.16)
<llzf|<2n/ €]l

Since for the derivative of the smooth function ¢(t) = e~*!, t € R, we have
that |¢(t)| = 1, it follows that |e~** — 1| < |¢|. Inserting this into (A.16), we
obtain

L < / el 1] 1K ()] da
1<z |27/ |€]|

By e
1<zl <2a/)ie) 120"

Using polar coordinates for the integration, the following estimate holds (re-
call that 27/||&]| > 1):

2/ €]
gg(nugw/ dp=CA@2r — ||€])) <4CAT. (A.17)
1

Thus, in order to show the boundedness of I, it remains to bound the integral
1.
Consider the integral

15:/ e 'K (- 2) dx,
lz—zll<2=/l<]l

with z given by (A.13). By changing variables, we see that I5 = e ?*¢[;.
Thus the estimate (A.17) implies

Is < 4ACA~. (A.18)

On the other hand, since 2||z|| = 27/||€]|, it is easy to check that

|I4—I5|§/ ’Kl(x—z)‘dac.
Bajz|| ABzz)) (2)



36 A

Using the results (A.9) and (A.10) for the symmetric difference, we get that
p(By)jz| AByy 2 (2)) < Cllz||™ and Byyjoy ABy.(2) C R\ Byz (). From this,

we conclude

s —I5| < / |K1(z — 2)| d
Bojz)| AB2jz) (2)

(A.5a) A
& 4,
B2||2HABZHZ|I(Z) H:L'_Z”

< A/ A e<ca. (A.19)
B

2)12| ABajz| (2) HZH"

Putting (A.18) and (A.19), we obtain that Iy < [Iy—I5|+|I5| < CA+4CAT
and the boundedness of I follows. — In summary, we have thus shown that

K1l < C. (A.20)

In a next step, we proof the lemma for general ¢ > 0%2. — Let ¢ > 0
and define the new kernel K'(z) = " K (ex). We claim that K’ satisfy the
conditions of the lemma. — First, we observe that

(A.5a) A A
K'(2)| = " K (ex)| < " —o = 2
lezf™ ]|

For the Hormander condition, we compute

/ |K'(x —y) — K'(z)|doz = / £"|K(ex — ey) — K(ex)| da
2llylI<ll=|l 2llyll<ll=]|
(A.5b)

::/ |K(z—ey) — K(2)|dz < B,
2elyl1<]l=1

and for the cancellation property

/ K'(z)dz = / e"K(ex) dx
Ri<||z||<R2 Ri<||z||<R2
Z::m/ K(z)dz 429,
eRi1<||z]|[<eR2

This shows the claim.
Next, we define

K'(x) if ||z|| >1
/ . =
K@) = {o if 2] < 1. (A-21)

2 The proof is straightforward for kernels of the particular form (1.55). In fact,
since they are homogeneous of degree —n, we have that ¢ ™" K1 (e 'z) = K. (z).
Properties of the Fourier transform then directly imply that ||K1||cc = || Ke||oo-
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Comparing with (A.6), we directly get that K.(z) = e "Kj(¢~'z). From a
well-known result for the Fourier transform, it then follows that

K.(6) = Kj(=€).

As shown in the first part of the proof, the right-hand side is uniformly
bounded (see (A.20)). This concludes the proof of the lemma. O






