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1

1.1

Definition 1.1. For a measurable function f : Rn −→ R, we define its
associated distribution function by

λf (α) = µ(Eα
f ) ,

where Eα
f denotes the set {x ∈ Rn : |f(x)| > α} with α ≥ 0 and µ the

Lebesgue measure on Rn.

Lemma 1.2. For a measurable function f and 0 < p < ∞, we have

‖f‖p
Lp = p

∫ ∞

0

αp−1λf (α) dα . (1.1)

Proof. From elementary calculus, we get

|f(x)|p = p

∫ |f(x)|

0

αp−1 dα = p

∫ ∞

0

αp−1χ{α<|f(x)|} dα .

By integration over Rn and Fubini’s theorem, it then follows

‖f‖p
Lp = p

∫ ∞

0

αp−1

(∫
Rn

χ{x : |f(x)|>α} dx

)
dα = p

∫ ∞

0

αp−1λf (α) dα .

ut

Hardy-Littlewood Maximal Function

Definition 1.3. For a locally integrable function f ∈ L1
loc(Rn), we define its

associated Hardy-Littlewood maximal function by

Mf(x) = sup
r>0

1
µ(Br(x))

∫
Br(x)

|f(y)| dy . (1.2)
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Theorem 1.4 (Hardy-Littlewood Maximal Theorem). Let 1 < p ≤ ∞
and f ∈ Lp(Rn). Then, we have

‖Mf‖Lp ≤ C ‖f‖Lp , (1.3)

where the constant C = C(n, p) depends only on the dimension n and p.
Moreover, for f ∈ L1(Rn) and α > 0, we have

µ({x : Mf(x) > α}) ≤ C

α
‖f‖L1 , (1.4)

where the constant C = C(n) depends only on n.

Proof. In a first step we prove (1.4). – Let Eα
Mf = {x : Mf(x) > α} denote

the set where the Hardy-Littlewood maximal function of f is greater than
α > 0. For x ∈ Eα

Mf , there exists by Definition 1.3 a ball Brx(x) with radius
rx > 0 and center x, simply denoted by Bx, such that∫

Bx

|f(y)| dy > α µ(Bx) . (1.5)

The family F = {Bx : x ∈ Eα
Mf} of such balls clearly covers the set

Eα
Mf . Using Lemma 1.5, we deduce the existence of a countable subfamily

{Bxk}k∈N of disjoint balls in F satisfying

∞∑
k=1

µ(Bxk) ≥ 1
5n

µ(Eα
Mf ) .

Applying (1.5) to each of these disjoint balls, we then obtain

‖f‖L1 ≥
∫

S∞
k=1 Bxk

|f(y)| dy >
∞∑

k=1

α µ(Bxk) ≥ α

5n
µ(Eα

Mf ) .

This shows (1.4) with C = 5n.
In a second step, we want to show (1.3). – Since the case p = ∞ is trivial

with C(n,∞) = 1, we assume that 1 < p < ∞. For α > 0, let

f1(x) =
{

f(x) if |f(x)| ≥ α/2
0 if |f(x)| < α/2 .

Then, we have |f(x)| ≤ |f1(x)| + α/2 and also |Mf(x)| ≤ |Mf1(x)| + α/2,
for all x ∈ Rn. Therefore, we get

Eα
Mf = {x : Mf(x) > α} ⊂ {x : Mf1(x) > α/2} = E

α/2
Mf1

.

Since f1 ∈ L1(Rn), we can apply (1.4) to f1 in order to get

µ(Eα/2
Mf1

) ≤ 2C

α
‖f1‖L1 .
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Thus, we arrive at

µ(Eα
Mf ) ≤ µ(Eα/2

Mf1
) ≤ 2C

α
‖f1‖L1 ≤ 2C

α

∫
{x : |f(x)|≥α/2}

|f(x)| dx . (1.6)

Next, we deduce from Lemma 1.2 that

‖Mf‖p
Lp = p

∫ ∞

0

αp−1λMf (α) dα

(1.6)

≤ p

∫ ∞

0

αp−1

(
2C

α

∫
{x : |f(x)|≥α/2}

|f(x)| dx

)
dα

= p

∫ ∞

0

αp−1

(
2C

α

∫
Rn

χ{x : |f(x)|≥α/2}|f(x)| dx

)
dα .

Using Fubini’s theorem as in the proof of Lemma 1.84, it follows

‖Mf‖p
Lp ≤ 2C p

∫
Rn

|f(x)|

(∫ 2|f(x)|

0

αp−1

α
dα

)
dx

=
2C p

p− 1

∫
Rn

|f(x)| 2p−1|f(x)|p−1 dx ,

since p > 1 by assumption. Thus we arrive at the desired result

‖Mf‖Lp ≤
(

2pC p

p− 1

)1/p

‖f‖Lp .

ut

Lemma 1.5 (Vitali-type Covering Lemma). Let E ⊂ Rn be measurable
and suppose that E ⊂

⋃
j Bj, where the family {Bj}j∈J is contained of balls

with bounded diameter, i.e., supj diam(Bj) = C < ∞. Then, there exists a
countable disjoint subfamily {Bjk

}k∈N such that

µ(E) ≤ 5n
∞∑

k=1

µ(Bjk
) . (1.7)

The Critical Case p = 1

We want to emphasize that taking the Hardy-Littlewood maximal function is
not a bounded operation on L1(Rn). This can be directly deduced from the
following observation: If f ∈ L1(Rn) and f 6≡ 0, then Mf is not in L1(Rn).
To see this, let ε > 0 small enough and because f vanishes not identically on
Rn, there exists r0 > 0 such that∫

Br0

|f(x)| dx ≥ ε .
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Note that for |x| > r0, we have Br0 ⊂ B2|x|(x). Thus, it follows

Mf(x) = sup
r>0

1
µ(Br(x))

∫
Br(x)

|f(y)| dy

≥ 1
µ(B2|x|(x))

∫
B2|x|(x)

|f(y)| dy

≥ 1
µ(B2|x|(x))

∫
Br0

|f(y)| dy ≥ C ε

|x|n
,

showing that the integrability of Mf fails at infinity.
Moreover, even if we restrict our attention to bounded subsets of Rn the

requirement of f (local) integrable is not sufficient for the (local) integrability
of Mf . We illustrate this fact by the following example: For n = 1 consider
the positive function

f(t) =
1

t(log t)2
χ(0,1) ,

which is integrable on [0, 1/2]1. For t ∈ (0, 1/2), let B2t(t) = (0, 2t) and we
have

Mf(t) ≥ 1
2t

∫ 2t

0

1
t(log t)2

dt

=
1
2t

(
− 1

log t

)∣∣∣∣2t

0

= − 1
2t(log 2t)

.

This directly gives that Mf is not integrable over the interval [0, 1/2].
The next proposition, however, shows that if we impose stronger con-

ditions on f then the local integrability of the Hardy-Littlewood maximal
function Mf can be deduced.

1 More generally, for α > 0, we consider the following functions on Rn:

f(x) =
1

‖x‖n log(1/‖x‖)1+α
χB1 ≤

1

‖x‖n | log ‖x‖ |1+α
χB1 .

Integration over B1/2 in polar coordinates givesZ
B1/2

f(x) dx ≤ C

Z 1/2

0

rn−1

rn | log r|1+α
dr

Introducing the new variable s = | log r|, we obtainZ
B1/2

f(x) dx ≤
Z ∞

| log(1/2)|

1

s1+α
ds .

Since 1/(1 + α) < 1, we deduce that f ∈ L1(B1/2).
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Proposition 1.6. Let B be a bounded subset of Rn and assume that f ∈
L log L, i.e., ∫

Rn

|f(x)| log+ |f(x)| dx < ∞ ,

where log+ |f(x)| = max{0, log |f(x)|}. Then we have that Mf ∈ L1(B).

Proof. From (1.1), we directly deduce that

‖Mf‖L1(B) ≤ 2
∫ ∞

0

λMf (2α) dα ,

and hence
‖Mf‖L1(B) ≤ 2 µ(B) + 2

∫ ∞

1

λMf (2α) dα . (1.8)

Proceeding as in the second step of the proof for Theorem 1.4, we obtain∫ ∞

1

λMf (2α) dα
(1.6)

≤
∫ ∞

1

(
C

α

∫
Rn

χ{x : |f(x)|≥α}|f(x)| dx

)
dα

= C

∫
Rn

|f(x)|

(∫ max{1,|f(x)|}

1

1
α

dα

)
dx .

A straightforward integration yields∫ ∞

1

λMf (2α) dα ≤ C

∫
Rn

|f(x)| log+ |f(x)| dx .

Inserting this in (1.8), we arrive at

‖Mf‖L1(B) ≤ 2 µ(B) + 2C

∫
Rn

|f(x)| log+ |f(x)| dx , (1.9)

where the right-hand side is finite by assumption. ut

The Calderón-Zygmund Decomposition

Theorem 1.7 (Calderón-Zygmund Decomposition). Let f ∈ L1(Rn)
with f ≥ 0 and let α > 0. Then there exists a sequence of disjoint cubes
(Ck)k∈N such that

(i) The average of f on all cubes is bounded from below and above by

α <
1

µ(Ck)

∫
Ck

f(x) dx ≤ 2nα . (1.10)

(ii) On the complement Ωc of the union Ω =
⋃∞

k=1 Ck, we have

f(x) ≤ α a.e. . (1.11)
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(iii) There exists a constant C = C(n) depending only on the dimension n
such that

µ(Ω) ≤ C

α
‖f‖L1 . (1.12)

Proof. We divide Rn into a mesh of equal cubes chosen large enough such
that their volume is larger or equal than ‖f‖L1/α. Thus, for every cube C0

in this mesh, we have
1

µ(C0)

∫
C0

f(x) dx ≤ α . (1.13)

Next, we fix a cube C0 in the initial mesh. We decompose it into 2n equal
disjoint cubes with half of the side-length. For the resulting cubes, there are
now two possibilities: Either (1.13) still holds or (1.13) is violated. Cubes of
the first case are the good cubes, denoted by Cg

1 , and the bad cubes of the
second case are denoted by Cb

1. In a next step, we decompose all cubes Cg
1 into

equal disjoint cubes with half side-length and leave the cubes Cb
1 unchanged.

The resulting cubes for which an estimate of the form (1.13) still holds are
denoted by Cg

2 and the remaining ones by Cb
2. Then, we proceed as before

dividing the cubes Cg
2 and leaving the cubes Cb

2 unchanged. – Repeating this
procedure for each cube in the initial mesh, we can define Ω =

⋃∞
k=1 Ck as the

union of all cubes which violate in some step of the decomposition process an
estimate of the form (1.13). (These are precisely those cubes with an upper
index b for bad.)

Note that for a cube Cb
i in Cb

i obtained in the i-th step, we have

1
µ(Cb

i )

∫
Cb

i

f(x) dx > α . (1.14)

Since 2nµ(Cb
i ) = µ(Cg

i−1), where Cg
i−1 is any cube in Cg

i−1, we then deduce

α <
1

µ(Cb
i )

∫
Cb

i

f(x) dx ≤ 2n

µ(Cg
i−1)

∫
Cg

i−1

f(x) dx ≤ 2n α .

This shows (i) of the theorem.
In order to show (ii), we note that by a variant of Lebesgue’s differentia-

tion theorem (see ) almost everywhere

f(x) = lim
d→0

1
µ(Cx,d)

∫
Cx,d

f(y) dy ,

where Cx,d denotes a cube containing x ∈ Rn with diameter d. By construc-
tion of the decomposition, there exists for every x ∈ Ωc a diameter dx > 0
such that all cubes Cx,d with diameter d < d0 satisfy an estimate of the form
(1.13). This implies directly that f(x) ≤ α for a.e. x ∈ Ωc.

The last part (iii) of the theorem can be established as follows:
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µ(Ω) =
∞∑

k=1

µ(Ck)
(1.15)
<

1
α

∫
Ω

f(x) dx ≤ 1
α
‖f‖L1 .

ut

Definition 1.8. Let 1 ≤ p, q ≤ ∞ and let T be a mapping from Lp(Rn) to
the space of measurable functions. For 1 ≤ q ≤ ∞, we say that the mapping
T is of strong type (p, q) – or simply of type (p, q) – if

‖Tf‖Lq ≤ C ‖f‖Lp ,

where the constant C is independent of f ∈ Lp(Rn). For the case of q < ∞,
we say that T is of weak type (p, q) if

µ({x ∈ Rn : |Tf(x)| > α}) ≤ C

(
1
α
‖f‖Lp

)q

,

where the constant C is independent of f and α > 0. For q = ∞, we say that
T is of weak type (p,∞) if T is of type (p,∞).

Remark. For q < ∞, we have by Chebyshev’s inequality

αq µ({x : |Tf(x)| > α}) ≤ ‖Tf‖q
Lq ≤ (C ‖f‖Lp)q ,

implying that T being of type (p, q) is also of weak type (p, q).

We also define Lp1 + Lp2(Rn) as the space of all functions f which can
be written as f = f1 + f2 with f1 ∈ Lp1(Rn) and f2 ∈ Lp2(Rn). By splitting
a function in its small and large parts, one can show that Lp(Rn) ⊂ Lp1 +
Lp2(Rn), for p1 ≤ p ≤ p2 with p1 < p2.

Theorem 1.9 (Marcinkiewicz Interpolation Theorem). Let 1 < r ≤
∞ and suppose that T is a sublinear operator from L1+Lr(Rn) to the space of
measurable functions, i.e., for all f, g ∈ L1 + Lr(Rn), the following pointwise
estimate holds:

|T (f + g)| ≤ |Tf |+ |Tg| . (1.15)

Moreover, assume that T is of weak type (1, 1) and also of weak type (r, r).
Then, for 1 < p < r, we have that T is of type (p, p) meaning that

‖Tf‖Lp ≤ C ‖f‖Lp ,

for all f ∈ Lp(Rn).

Remark. Because of the last theorem and the fact that the Hardy-Littlewood
maximal function is sublinear, we can directly deduce (1.3) in Theorem 1.4
from (1.4) – saying that the operator M is of weak type (1, 1) – and the
obvious observation that M is of type (∞,∞).
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Singular Integral Operators I

Theorem 1.10. Let K ∈ L2(Rn) and assume the following:

(i) The Fourier transform K̂ of K is essentially bounded by the constant A,
i.e.,

‖K̂‖L∞ ≤ A . (1.16)

(ii) The function K satisfies the so-called Hörmander condition∫
2‖y‖≤‖x‖

∣∣K(x− y)−K(x)
∣∣ dx ≤ B , for ‖y‖ > 0 . (1.17)

Moreover, let T be the well-defined convolution operator on L1(Rn)∩Lp(Rn),
with 1 < p < ∞, given pointwise by

Tf(x) = K ? f(x) =
∫

Rn

K(x− y)f(y) dy . (1.18)

Then, there exists a constant C = C(n, p,A, B) – but independent of the
L2-norm of K – such that

‖Tf‖Lp ≤ C ‖f‖Lp . (1.19)

Remark. a) In the previous theorem, the kernel K is assumed to be in L2(Rn)
in order to make the convolution operator T well defined on L1(Rn)∩Lp(Rn),
for 1 < p < ∞. In fact, by Young’s inequality for convolutions we have

‖Tf‖L2 ≤ ‖K‖L2‖f‖L1 ,

where we are explicitly using the fact that f ∈ L1(Rn).
b) Note that T is a densely defined linear operator on Lp(Rn). More

precisely, the operator is well-defined on the dense linear subset L1(Rn) ∩
Lp(Rn) of Lp(Rn). Later, from (1.19), we can deduce that T can be extended
to all of Lp(Rn) by continuity.

Proof. The proof is divided in the following three steps: First, we show that
the convolution operator T is of weak type (2, 2). In a second step, we estab-
lish that T is of weak type (1, 1), which is the most difficult part of the proof.
Finally we obtain the result (1.19) by Marcinkiewicz’s interpolation theorem
and a density argument.

First step: Let L1(Rn) ∩ L2(Rn), then for the Fourier transform T̂ f of
Tf ∈ L2(Rn), we have

‖T̂ f‖L2 = ‖K̂ ? f‖L2 = ‖K̂ f̂‖L2

(1.16)

≤ A ‖f‖L2 .

Since ‖T̂ f‖L2 = ‖Tf‖L2 by Plancherel’s theorem, we then obtain
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‖Tf‖L2 ≤ A ‖f‖L2 . (1.20)

This shows that T is of type (2, 2), which also implies that T is of weak type
(2, 2), i.e.,

µ({x : |Tf(x)| > α}) ≤ A2

α2
‖f‖2L2 . (1.21)

Second step: Let α > 0. Then we apply the Calderón-Zygmund Decomposi-
tion 1.7 to 0 ≤ |f | ∈ L1(Rn) and α. The resulting countable family of disjoint
cubes will be denoted by {Ck}k∈N and we write Ω =

⋃∞
k=1 Ck for their union.

Now, we define

g(x) =

 f(x) for x ∈ Ωc

1
µ(Ck)

∫
Ck

f(y) dy for x ∈ Ck .
(1.22)

Writing f as sum of a good and a bad function, namely f = g + b, it follows
that b has the following form:

b =
∞∑

k=1

bk , (1.23)

with

bk(x) =
(

f(x)− 1
µ(Ck)

∫
Ck

f(y) dy

)
χCk

(x) .

Since by definition of the convolution operator T

|Tf(x)| ≤ |Tg(x)|+ |Tb(x)| , (1.24)

for all x ∈ Rn, we get

µ({x : |Tf(x)| > α}) ≤ µ({x : |Tg(x)| > α/2})
+µ({x : |Tb(x)| > α/2}) . (1.25)

In order to get an estimate for the first term on the right-hand side of
(1.25), we first claim that g is an element of L2(Rn). – From |g(x)| ≤ α for
x ∈ Ωc, we get

‖g‖2L2 =
∫

Ωc

|g(x)|2 dx +
∫

Ω

|g(x)|2 dx

=
∫

Ωc

α|g(x)| dx +
∫

Ω

|g(x)|2 dx , (1.26)

and the second term on the right-hand side can be bounded due to (1.10) by
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Ω

|g(x)|2 dx =
∞∑

k=1

∫
Ck

|g(x)|2 dx

(1.22)

≤
∞∑

k=1

∫
Ck

(
1

µ(Ck)

∫
Ck

|f(x)| dx

)2

dx

≤
∞∑

k=1

∫
Ck

(2nα)2 dx = C α2µ(Ω) . (1.27)

Inserting this into (1.26) and using also (1.12), we arrive at

‖g‖2L2 ≤ α ‖f‖L1 + C α2µ(Ω)
≤ α ‖f‖L1 + C α ‖f‖L1 ≤ (C + 1)α ‖f‖L1 ,

showing the claim. As a consequence, we can apply (1.21) to g ∈ L2(Rn) in
order to get the following estimate for the first term on the right-hand side
of (1.25):

µ({x : |Tg(x)| > α/2}) ≤ C

α2
‖g‖2L2

≤ C

α
‖f‖L1 . (1.28)

Next, we want to obtain an estimate for the second term on the right hand-
side of (1.25). – For this purpose, we expand each cube Ck in the Calderón-
Zygmund decomposition by the factor 2

√
n leaving its center ck fixed. The

new bigger cubes are denoted by C̃k and its union by Ω̃ =
⋃∞

k=1 C̃k. It is
easy to see that Ω ⊂ Ω̃, Ω̃c ⊂ Ωc and µ(Ω̃) ≤ (2

√
n)n µ(Ω). Moreover, for

x 6∈ C̃k, we have

‖x− ck‖ ≥ 2 ‖y − ck‖ , for all y ∈ Ck . (1.29)

Now, let ck denote the center of the cube Ck. Then, we can write

Tb(x) =
∞∑

k=1

Tbk(x) =
∞∑

k=1

∫
Ck

K(x− y)bk(y) dy

=
∞∑

k=1

∫
Ck

(
K(x− y)−K(x− ck)

)
bk(y) dy ,

being a direct consequence of the fact that for all Ck∫
Ck

bk(y) dy =
∫

Ck

(
f(y)− 1

µ(Ck)

∫
Ck

f(z) dz

)
dy = 0 .

This then leads to
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|Tb(x)| dx ≤
∞∑

k=1

∫
Ω̃c

(∫
Ck

∣∣K(x− y)−K(x− ck)
∣∣ ∣∣bk(y)

∣∣ dy

)
dx

≤
∞∑

k=1

∫
C̃c

k

(∫
Ck

∣∣K(x− y)−K(x− ck)
∣∣ ∣∣bk(y)

∣∣ dy

)
dx

=
∞∑

k=1

∫
Ck

(∫
C̃c

k

∣∣K(x− y)−K(x− ck)
∣∣ dx

)∣∣bk(y)
∣∣ dy .

Setting x̄ = x − ck, ȳ = y − ck and using (1.29), the integral in parenthesis
becomes∫

C̃c
k

∣∣K(x− y)−K(x− ck)
∣∣ dx ≤

∫
2‖ȳ‖≤‖x̄‖

∣∣K(x̄− ȳ)−K(x̄)
∣∣ dx̄ .

The assumption (1.17) of the theorem, then implies that∫
Ω̃c

|Tb(x)| dx ≤ B
∞∑

k=1

∫
Ck

|bk(y)| dy ≤ C ‖f‖L1 . (1.30)

At this stage, we are ready to give the following estimate for the second
term in (1.25):

µ({x ∈ Rn : |Tb(x)| > α/2}) ≤ µ({x ∈ Ω̃c : |Tb(x)| > α/2}) + µ(Ω̃)
(1.30)

≤ 2C

α
‖f‖L1 + (2

√
n)n µ(Ω)

(1.12)

≤ 2C

α
‖f‖L1 +

C

α
‖f‖L1 ≤ C

α
‖f‖L1 .

(1.31)

Combining (1.28) with (1.31), we end up with

µ({x : |Tf(x)| > α}) ≤ C

α
‖f‖L1 , (1.32)

showing that the convolution operator T is of weak type (1, 1).
Third step: Note that we have already shown the inequality (1.19) in the

case of p = 2 in (1.20). – Putting r = 2 in Marcinkiewicz Interpolation
Theorem 1.9 and using the fact that T is of weak type (1, 1), respectively
(2, 2), by (1.21), respectively (1.32), we conclude that

‖Tf‖Lp ≤ C ‖f‖Lp , (1.33)

for 1 < p < 2.
For the case 2 < p < ∞, we will use a duality argument. – Consider

the dual space Lq(Rn) of Lp(Rn) with 1/p + 1/q = 1. We easily see that
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1 < q < 2. Now, let f ∈  L1(Rn) ∩ Lp(Rn), then the Lp-norm of Tf is given
by the following expression:

‖Tf‖Lp = sup
g∈L1∩Lq

‖g‖Lq≤1

∣∣∣∣∫
Rn

Tf(x)g(x) dx

∣∣∣∣ . (1.34)

We calculate∣∣∣∣∫
Rn

Tf(x)g(x) dx

∣∣∣∣ =
∣∣∣∣∫

Rn

(∫
Rn

K(x− y)f(y) dy

)
g(x) dx

∣∣∣∣
=
∣∣∣∣∫

Rn

(∫
Rn

K(x− y)g(x) dx

)
f(y) dy

∣∣∣∣ ,

where Fubini’s theorem was applied because of K ∈ L2(Rn) and the assump-
tions on g and f . For the first integral, we conclude2 from (1.33) that it is an
element of Lp(Rn). Using Hölder’s inequality, we end up with

sup
g∈L1∩Lq

‖g‖Lq≤1

∣∣∣∣∫
Rn

Tf(x)g(x) dx

∣∣∣∣ ≤
∫

Rn

∣∣∣∣(∫
Rn

K(x− y)g(x) dx

)
f(y)

∣∣∣∣ dy

(1.33)

≤ C ‖g‖Lq‖f‖Lp ≤ C ‖f‖Lp .

This establishes the theorem. ut

Singular Integral Operators II

We generalize Theorem 1.10 in the sense that now the L2-boundedness of the
convolution operator T follows from conditions imposed on the kernel K and
not directly from the assumptions.

Theorem 1.11. Let K : Rn −→ R be a measurable function such that

|K(x)| ≤ A

‖x‖n
, for ‖x‖ > 0 . (1.35a)∫

2‖y‖≤‖x‖

∣∣K(x− y)−K(x)
∣∣ dx ≤ B , for ‖y‖ > 0 . (1.35b)∫

R1<‖x‖<R2

K(x) dx = 0 , for 0 < R1 < R2 < ∞ .

(1.35c)

For ε > 0 and f ∈ Lp(Rn) with 1 < p < ∞, we set

Tεf(x) =
∫
‖y‖≥ε

f(x− y)K(y) dy . (1.36)

2 That the kernel K(x) is replaced by K(−x) has no significance.
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Then, we have
‖Tεf‖Lp ≤ C ‖f‖Lp , (1.37)

where the constant C is independent of ε and f . Moreover, there exists Tf ∈
Lp(Rn) such that

Tεf −→ Tf in Lp (ε −→ 0) , (1.38)

for all f ∈ Lp(Rn).

Remark. The singular integral defined in (1.36) is absolutely convergent. To
see this, note that due to (1.35a) we have that K ∈ Lp′(Rn \ Bε), where
1 < p′ is the Hölder conjugate exponant of p. From Young’s inequality, it
then follows that ‖Tεf‖∞ ≤ ‖f‖Lp‖K‖Lp′ .

Proof. For every ε > 0, we define

Kε(x) =
{

K(x) if ‖x‖ ≥ ε
0 if ‖x‖ < ε .

(1.39)

We observe that Kε ∈ L2(Rn) and that the Hörmander condition (1.35b)
also holds for Kε. Moreover, we will show in Appendix 1.84 that

‖K̂ε‖∞ ≤ C , (1.40)

where the constant C = C(n) only depends on the dimension n and not on ε.
Applying Theorem 1.10 to the kernels Kε, ε > 0, we obtain (1.37) as direct
consequence, since

Tεf(x) =
∫

Rn

f(x− y)Kε(y) dy .

In a next step, we fix a function f ∈ C1
c (Rn) and write

Tεf(x) =
∫

1≤‖y‖
f(x− y)K(y) dy +

∫
ε≤‖y‖≤1

f(x− y)K(y) dy

=
∫

Rn

f(x− y)K1(y) dy +
∫

ε≤‖y‖≤1

(
f(x− y)− f(x)

)
K(y) dy .

(1.41)

Note that the cancellation property (1.35c) is used for the second term on the
right-hand side. Because of the regularity assumptions on f , we can apply
the mean value theorem in order to get the existence of a constant C such
that ∣∣(f(x− y)− f(x)

)
K(y)

∣∣ ≤ C ‖y‖ |K(y)|
(1.35a)

≤ C A

‖y‖n−1
, (1.42)
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for all x ∈ Rn. This being integrable for y ∈ B1 ⊂ Rn, we deduce by domi-
nated convergence theorem for the second integral on the right-hand side of
(1.41) that

lim
ε→0

∫
ε≤‖y‖≤1

(
f(x− y)− f(x)

)
K(y) dy =

∫
‖y‖≤1

(
f(x− y)− f(x)

)
K(y) dy ,

(1.43)

for all x ∈ Rn. At this stage, we can define

Tf(x) := lim
ε→0

Tεf(x) =
∫

Rn

f(x− y)K(y) dy , (1.44)

for all x ∈ Rn and f ∈ C1
c (Rn).

Writing (1.43) as limε→0 gε(x) = g(x), we directly deduce that∣∣gε(x)− g(x)
∣∣p −→ 0 (ε −→ 0) ,

for all x ∈ Rn. Consider now the compact set S = {x ∈ Rn : dist(K, x) ≤ 1}
with K the support of f ∈ C1

c (Rn), we obtain3

|gε(x)| ≤ χS(x)
∫

ε≤‖y‖≤1

∣∣f(x− y)− f(x)
∣∣|K(y)| dy

(1.42)

≤ CA χS(x)
∫

B1

1
‖y‖n−1

dy ≤ CχS(x) .

The right-hand side being independent of ε and integrable over Rn, we con-
clude that ∣∣gε(x)− g(x)

∣∣p ≤ C (|gε(x)|p + |g(x)|p)

is still integrable. Thus, we can apply dominated convergence to arrive at∫
Rn

∣∣gε(x)− g(x)
∣∣p dx −→ 0 (ε −→ 0) .

On the other hand, the first integral in (1.41) is an Lp-function for p > 1.
To see this, note that Young’s inequality implies

‖f ? K1‖Lp ≤ ‖f‖L1‖K1‖Lp ,

since f ∈ L1(Rn) by assumption and K1(y) ≤ A/‖y‖n, for ‖y‖ ≥ 1, is an
Lp-function for p > 1. In summary, it then follows that

‖Tεf − Tf‖p
Lp =

∫
Rn

∣∣gε(x)− g(x)
∣∣p dx −→ 0 (ε −→ 0) , (1.45)

3 Here we use also the fact that the constant C in (1.42) is independent of x, since
f is compactly supported.
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for all f ∈ C1
c (Rn).

For general f ∈ Lp(Rn), we know that, for every δ > 0, there exists by
density h ∈ C1

c (Rn) such that ‖f − h‖Lp ≤ δ/3. Moreover, due to (1.45),
there exists m0 ∈ N such that ‖Tεmh− Tεnh‖Lp ≤ δ/3, for every m,n ≥ m0.
It follows that

‖Tεm
f − Tεn

f‖Lp ≤ ‖Tεm
f − Tεm

h‖Lp + ‖Tεm
h− Tεn

h‖Lp + ‖Tεn
h− Tεn

f‖Lp

(1.37)

≤ C ‖f − h‖Lp + ‖Tεm
h− Tεn

h‖Lp + C ‖h− f‖Lp ≤ C δ .

Thus, the sequence (Tεf)ε>0 is a Cauchy sequence and converges in Lp. More-
over, we denote the limit by Tf ∈ Lp(Rn) showing (1.38). – Note also that

‖Tf‖Lp = lim
ε→0

‖Tεf‖Lp

(1.37)

≤ C ‖f‖Lp .

ut

Calderón-Zygmund Estimate for the Laplace Operator

From the previous theorem, we can now deduce the important so-called
Calderón-Zygmund estimate for the Laplace operator. – Consider first the
fundamental solution of the Laplace operator given by

Γ (x) =
1

n(2− n)ωn

1
‖x‖n−2

, (1.46)

where ωn is the volume of the n-dimensional unit ball and the dimension n is
assumed to be larger or equal than two. By a straightforward computation,
the first and second order partial derivatives reads as

∂iΓ (x) =
1

nωn

xi

‖x‖n
, (1.47a)

∂j∂iΓ (x) =
1

nωn

(
‖x‖2 δji − n xjxi

)
‖x‖n−2

, (1.47b)

leading to the following estimates:

|∂iΓ (x)| ≤ C
1

‖x‖n−1
, (1.48a)

|∂j∂iΓ (x)| ≤ C
1

‖x‖n
. (1.48b)

Next, we define for i, j = 1, . . . , n the kernels

Kij(x) = ∂i∂jΓ (x) . (1.49)

We claim that these kernels verify the hypothesis (1.35a)–(1.35c) of The-
orem 1.11. – In order to see this, we first note that by a simple calculation
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|∂lKij(x)| ≤ C
1

‖x‖n+1
.

Since the kernels Kij are smooth on Rn\{0}, the mean value theorem implies
that ∣∣Kij(x− y)−Kij(x)

∣∣ ≤ C ‖y‖
‖x‖n+1

.

Integration in polar coordinates then gives∫
2‖y‖≤‖x‖

∣∣Kij(x− y)−Kij(x)
∣∣ dx ≤ C ‖y‖

∫ ∞

2‖y‖

1
rn+1

rn−1dr ≤ B ,

showing that the Hörmander condition (1.35b) holds for Kij . For the cancel-
lation property (1.35c), assume first that i 6= j. Then, we have∫

R1≤‖x‖≤R2

Kij(x) dx
(1.47b)

= C

∫ R2

R1

1
rn−2

(∫
Sn−1

xixj dσ(x)
)

rn−1 dr .

This vanishes since the integral in parenthesis is zero. In the case of i = j,
we observe that∫

R1≤‖x‖≤R2

Kii(x) dx
(1.47b)

=
∫

R1≤‖x‖≤R2

‖x‖2 − n x2
i

‖x‖n−2
dx

=
∫

R1≤‖x‖≤R2

‖x‖2 − n x2
l

‖x‖n−2
dx =

∫
R1≤‖x‖≤R2

Kll(x) dx .

Hence, we obtain that, for all i = 1, . . . , n,

n

∫
R1≤‖x‖≤R2

Kii(x) dx =
∫

R1≤‖x‖≤R2

K11 + . . . + Knn dx .

The right-hand side being zero, we have thus shown that the cancellation
property (1.35c) holds for the kernels Kij . Because of (1.48b), the hypothesis
(1.35a) also holds and the claim follows.

Take now f ∈ C1
c (Rn) and define for ε > 0

Tεf(x) =
∫
‖y‖≥ε

f(x− y)Kij(y) dy . (1.50)

From Theorem 1.11, we then deduce that

‖Tf‖Lp ≤ C ‖f‖Lp , (1.51)

where 1 < p < ∞ and

Tf(x) = lim
ε→0

Tεf(x) =
∫

Rn

f(x− y)Kij(y) dy ,
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for all x ∈ Rn (see (1.44)).
In a next step, we consider u ∈ C3

c (Rn) and the function f such that the
Laplace equation

∆u = f on Rn

holds. Obviously, we have that f ∈ C1
c (Rn). The function u can be expressed

with the help of the fundamental solution (1.46) as

u(x) =
∫

Rn

Γ (x− y)f(y) dy + g(x) ,

where g is an harmonic function on Rn which must tend to zero at infinity.
By Liouville’s theorem this implies that g must be identically zero. Moreover,
we have that

∂i∂ju(x) =
∫

Rn

∂i∂jΓ (x− y)f(y) dy , (1.52)

for all i, j = 1, . . . , n. For a proof of this we refer to []. Observing that the
right-hand side of (1.52) is precisely the Lp-function Tf , we conclude that
(1.51) translates to

‖∂i∂ju‖Lp = ‖Tf‖Lp ≤ C ‖f‖Lp = C ‖∆u‖Lp , (1.53)

for 1 < p < ∞. – For a general u ∈ W 2,p(Rn), there exists by density a
sequence (uk)k∈N in C3

c (Rn) such that uk −→ u in W 2,p, for k −→∞. From
this, we deduce that

‖D2u‖Lp = lim
k→∞

‖D2uk‖Lp

(1.53)

≤ lim
k→∞

C ‖∆uk‖Lp = C ‖∆u‖Lp .

In summary, we thus end up with the following Calderón-Zygmund estimate
for the Laplace operator:

Theorem 1.12. Let u ∈ W 2,p(Rn). Then, for 1 < p < ∞, we have

‖D2u‖Lp ≤ C‖∆u‖Lp . (1.54)

Example 1.13 (Counter-Example for L1). On R2, we consider the function

f(x) =
1

‖x‖2 log(1/‖x‖)2

being integrable over the disc D1/2. We want to determine the function u
which solves ∆u = f on R2. Since f is radial, we can assume the same for u
implying that the Laplace equation reads in polar coordinates as

u′′(r) +
1
r

u′(r) =
1

r2 log(1/r)2
.

Equivalently, we have
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(r u′)′(r) =
1

r2 log(1/r)2
.

Integration gives u′(r) = 1/
(
r log(1/r)

)
and a easy calculation

u′′(r) = − 1
r2 log(1/r)

+
1

r2 log(1/r)2
.

The first term, however, is not integrable over D1/2.

Singular Integral Operators III

Next, we consider kernels K of the form

K(x) =
Ω(x)
‖x‖n

, (1.55)

where Ω is an homogeneous function of degree 0, i.e., Ω(δx) = Ω(x), for δ > 0.
In other words, the function Ω is radially constant and therefore completely
determined by its values on the sphere Sn−1. Note also that K is homogeneous
of degree −n, i.e., K(δx) = δ−nK(x). – The following proposition shows how
the conditions (1.35a)–(1.35c) on the kernel translate to kernels of the form
(1.55).

Proposition 1.14. Let K : Rn −→ R be a measurable function given by
K(x) = Ω(x)/‖x‖n with Ω an homogeneous function of degree 0 such that

(i) The following cancellation property holds:∫
Sn−1

Ω(x) dσ(x) = 0 . (1.56)

(ii) If we set
ω(δ) = sup

‖x−y‖≤δ

x,y∈Sn−1

∣∣Ω(x)−Ω(y)
∣∣ ,

the following integral is finite:∫ 1

0

ω(δ)
δ

dδ < ∞ . (1.57)

Then K satisfies the conditions (1.35a)–(1.35c).

Remark. a) Note that if Ω is Lipschitz on Sn−1, then ω(δ) ≤ Cδ and the
so-called Dini-type continuity condition (1.72) is full–filled. The same is true
if Ω is assumed to be Hölder continuous with exponent γ on Sn−1 since then
ω(δ) ≤ Cδγ .

b) From the proposition, we conclude that Theorem 1.11 holds for kernels
of the form (1.55) satisfying the two conditions (1.71) and (1.72).
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Proof. The conditions (1.35a), respectively (1.35c), follow directly from (1.72),
respectively (1.71) and integration in polar coordinates.

In order to establish (1.35b), we first observe that∫
2‖y‖≤‖x‖

∣∣K(x− y)−K(x)
∣∣ dx ≤

∫
2‖y‖≤‖x‖

∣∣Ω(x− y)−Ω(x)
∣∣

‖x− y‖n
dx

+
∫

2‖y‖≤‖x‖

|Ω(x)|
∣∣∣∣ 1
‖x− y‖n

− 1
‖x‖n

∣∣∣∣ dx .

(1.58)

Since Ω is bounded due to (1.72) and as a consequence of the mean value
theorem ∣∣∣∣ 1

‖x− y‖n
− 1
‖x‖n

∣∣∣∣ ≤ C‖y‖
‖x‖n+1

,

we conclude by integration in polar coordinates that the second integral on
the right-hand side of (1.73) is finite. Note also that∣∣Ω(x− y)−Ω(x)

∣∣ =
∣∣∣∣Ω( x− y

‖x− y‖

)
−Ω

(
x

‖x‖

)∣∣∣∣
≤ ω

(∥∥∥∥ x− y

‖x− y‖
− x

‖x‖

∥∥∥∥)
by definition of the function ω. Moreover, if 2‖y‖ ≤ ‖x‖, then 1/‖x− y‖n ≤
C/‖x‖n and also ∥∥∥∥ x− y

‖x− y‖
− x

‖x‖

∥∥∥∥ ≤ C
‖y‖
‖x‖

.

Inserting these estimates in the first integral on the right-hand side of (1.73),
we obtain ∫

2‖y‖≤‖x‖

∣∣Ω(x− y)−Ω(x)
∣∣

‖x− y‖n
dx ≤ C

∫
2‖y‖≤‖x‖

ω
(
‖y‖
‖x‖

)
‖x‖n

dx

≤ C

∫ ∞

2‖y‖

ω
(
‖y‖
r

)
rn

dr .

Changing coordinates δ = C‖y‖/r and using (1.72), we deduce that the last
integral is finite showing that (1.35b) holds. ut

Example 1.15 (Riesz Transform). For j = 1, . . . , n, we now consider the ker-
nels Kj(x) = Ωj(x)/‖x‖n with

Ωj(x) = Cn
xj

‖x‖
, (1.59)
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where Cn =. It is easy to check that Ωj is Lipschitz on Sn−1 and since Ωj is
an odd function the cancellation property∫

Sn−1
Ωj(x) dσ(x) = 0

also holds. For f ∈ Lp(Rn) with 1 ≤ p < ∞, we then define the Riesz
transform by

Rjf(x) = lim
ε→0

Rj,εf(x) , (1.60)

where

Rj,εf(x) =
∫

ε≤‖y‖
f(x− y)Kj(y) dy

= Cn

∫
ε≤‖y‖

f(x− y)
yj

‖y‖n+1
dy .

Note that the limit in (1.75) exists almost everywhere because of Theorem
1.17 below. Moreover, Theorem 1.11 implies that

‖Rjf‖Lp ≤ C ‖f‖Lp , (1.61)

for f ∈ Lp(Rn) with 1 < p < ∞. Computing the Fourier transform of Rjf ,
we obtain (see [])

R̂jf(ξ) =
i ξj

‖ξ‖
f̂(ξ) . (1.62)

Now, we want to show that the Calderón-Zygmund estimate for the
Laplace operator in Theorem 1.12 can also be established with the help of
the Riesz transform. – For this purpose, let f ∈ C2

c (Rn) and note that the
Fourier transform of its second order partial derivatives are given by

∂̂i∂jf(ξ) = (i ξi)(i ξj) f̂(ξ) = −ξiξj f̂(ξ) .

In particular, we have for the Fourier transform of the Laplace operator
∆̂f(ξ) = −‖ξ‖2 f̂(ξ). This enables us to write the following:

∂̂i∂jf(ξ) = −ξiξj f̂(ξ) =
i ξi

‖ξ‖
i ξj

‖ξ‖
∆̂f(ξ)

(1.76)
=

i ξi

‖ξ‖
R̂j(∆f)(ξ)

(1.76)
= F

(
Ri(Rj(∆f))

)
(ξ) .

Thus, we get
∂i∂jf = Ri

(
Rj(∆f)

)
. (1.63)

From (1.61), it then follows that

‖∂i∂jf‖Lp =
∥∥Ri

(
Rj(∆f)

)∥∥
Lp

≤ C ‖Rj(∆f)‖Lp ≤ C ‖∆f‖Lp ,

for 1 < p < ∞. Finally, by a density argument we recover (1.54).
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The Critical Case p = 1

We want to emphasize that the singular integral convolution operator T is not
bounded on L1(Rn). This is confirmed by the following observation: If 0 ≤ f ∈
L1(Rn) and f 6≡ 0, then Tf 6∈ L1(Rn). – To see this assume by contradiction
that Tf ∈ L1(Rn). Hence, its Fourier transform T̂ f must be continuous.
Since 0 ≤ f ∈ L1(Rn) and f 6≡ 0, note also that f̂(0) = ‖f‖L1 > 0. On the
other hand, we know that T can be realized by an homogeneous of degree
0 multiplier m, i.e., T̂ f(ξ) = m(ξ)f̂(ξ). Consider, for example, the Riesz
transform Rjf with multiplier given by the right-hand side of (1.76). Since
m is obviously not continuous at 0 and f̂(0) > 0, we conclude that T̂ f is also
not continuous at 0 being a contradiction to the assumption Tf ∈ L1(Rn).

However, as in the case of the Hardy-Littlewood maximal function, there
is the following refinement:

Proposition 1.16. Let B be a bounded subset of Rn and assume that∫
Rn

|f(x)|
(
1 + log+ |f(x)|

)
dx < ∞ .

Then we have that Tf ∈ L1(B).

In order to prove this proposition, several estimates in the proof of
Theorem 1.10 have to be formulated slightly differently. – Consider again
0 ≤ |f | ∈ L1(Rn) and α > 0 with the corresponding Calderón-Zygmund
decomposition. Then, we introduce the positive function

χα
f (x) =

{
|f(x)| if |f(x)| ≤ α
α if |f(x)| > α .

(1.64)

This enables us to write, using the definition (1.22) for the function g,

‖g‖2L2 =
∫

Ωc

|g(x)|2 dx +
∫

Ω

|g(x)|2 dx

=
∫

Ωc

(
χα

f (x)
)2

dx +
∫

Ω

|g(x)|2 dx

(1.27)

≤
∫

Rn

(
χα

f (x)
)2

dx + C α2µ(Ω) . (1.65)

Thus, it follows that (compare with (1.28))

µ({x : |Tg(x)| > α/2}) ≤ C

α2
‖g‖2L2

≤ C

α2

∫
Rn

(
χα

f (x)
)2

dx + Cµ(Ω) . (1.66)

Moreover, we put (1.30) in the following form:
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Ω̃c

|Tb(x)| dx ≤ B
∞∑

k=1

∫
Ck

|bk(y)| dy

≤ B

∫
Ω

(
|f(y)|+ |g(y)|

)
dy

(1.22)
= 2B

∫
Ω

|f(y)| dy
(1.10)

≤ 2B 2nαµ(Ω) .

This then implies that (compare with (1.31))

µ({x ∈ Rn : |Tb(x)| > α/2}) ≤ µ({x ∈ Ω̃c : |Tb(x)| > α/2}) + µ(Ω̃)
≤ 4B 2nµ(Ω) + (2

√
n)n µ(Ω)

≤ C µ(Ω) . (1.67)

Combining (1.66) with (1.67), we end up with

µ({x : |Tf(x)| > α}) ≤ µ({x : |Tg(x)| > α/2}) + µ({x : |Tb(x)| > α/2})

≤ C

α2

∫
Rn

(
χα

f (x)
)2

dx + C µ(Ω) (1.68)

Now, we are ready to give a proof of Proposition 1.16.

Proof (of Proposition 1.16). The proof will be similar to the proof of Propo-
sition 1.6. – We already know that

‖Tf‖L1(B) ≤ µ(B) +
∫ ∞

1

λTf (α) dα .

Inserting (1.68) for λTf (α), we deduce that

‖Tf‖L1 ≤ µ(B) +
∫ ∞

1

(
C

α2

∫
Rn

(
χα

f (x)
)2

dx

)
dα

+ C

∫ ∞

1

µ(Ωα) dα , (1.69)

where we changed slightly the notation for the cubes of the Calderón-
Zygmund decomposition in order to emphasize that they depend on α.

Next, we compute the first integral on the right-hand side of the last
equation∫ ∞

1

(
C

α2

∫
Rn

(
χα

f (x)
)2

dx

)
dα

(1.64)
= C

∫
Rn

(∫ |f(x)|

0

dα +
∫ ∞

|f(x)|

1
α2
|f(x)|2 dα

)
dx

= C

∫
Rn

(|f(x)|+ |f(x)|) dx = 2C ‖f‖L1 .

ut
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In Theorem 1.11, we have shown that the singular integral operation
Tf = limε→0 Tεf exists in the sense of Lp-convergence. The existence of this
operation also in the sense of convergence almost everywhere is guaranteed
by the next theorem.

Theorem 1.17. Let K : Rn −→ R be a measurable function given by
K(x) = Ω(x)/‖x‖n with Ω an homogeneous function of degree 0 satisfying the
hypothesis of Proposition 1.14. For ε > 0 and f ∈ Lp(Rn) with 1 ≤ p < ∞,
we set

Tεf(x) =
∫
‖y‖≥ε

f(x− y)
Ω(y)
‖y‖n

dy , (1.70)

where the integral on the right-hand side is absolutely convergent for every x.
Then, we have that limε→0 Tεf(x) exists for a.e. x ∈ Rn.

Remark. In the case of f ∈ C1
c (Rn), the statement of the theorem was already

an intermediate result in the proof of Theorem 1.11 (see (1.44)) and will be
also needed to show the present general case.
Proof. ut

Fractional Integral Operators

Recall that for f ∈ C1
c (Rn) the function

u(x) =
∫

Rn

Γ (x− y)f(y) dy

=
1

n(2− n)ωn

∫
Rn

1
‖x− y‖n−2

f(y) dy

lies in C2(Rn) and satisfies ∆u = f . We also say that u is the Newtonian
potential of f . Recall that its Fourier transform reads as

û(ξ) = −‖ξ‖−2f̂(ξ) . (1.71)

More generally, for 0 < α < n, we define the formal integral operators

Iαf(x) =
1

γ(α)

∫
Rn

1
‖x− y‖n−α

f(y) dy , (1.72)

where γ(α) =. These will be called Riesz potentials of f or fractional integral
operators. Note that in the case α = 2, we recover the Newtonian potential
in the sense that formally ∆I2f = f or equivalently I2f = ∆−1f . If f is now
assumed to be a Schwartz function, then the following equality in the sense
of distributions holds for the Fourier transform of the Riesz potentials:

Îαf(ξ) = ‖ξ‖−αf̂(ξ) . (1.73)
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Comparing this with (1.71), we can roughly speaking say that the Riesz
potential Iα defines negative fractional powers of the (negative) Laplace op-
erator. We can write formally Iαf = (−∆)−α/2f .

Next, we want to study the behavior of the Riesz potentials on Lp-spaces.
– Assume that they are bounded from Lp(Rn) to Lq(Rn), i.e., for 0 < α < n,
we have

‖Iαf‖Lq ≤ C ‖f‖Lp .

For such an estimate to be true, the exponent q cannot be arbitrary due to
homogeneity considerations. More precisely, since

(
Iαf

)
δ
(x) = δα Iαfδ(x),

where fδ(x) = f(δx) denotes the function rescaled by δ, we get

‖Iαfδ‖Lq = δ−α ‖(Iαf)δ‖Lq = δ−α−n
q ‖Iαf‖Lq .

Applying (1.73) to the rescaled function fδ, it follows that the exponent q
must satisfy

1
q

=
1
p
− α

n
. (1.74)

Theorem 1.18 (Hardy-Littlewood-Sobolev Theorem for Fractional
Integration). Let 0 < α < n. Then, we have the following three statements:

(i) For f ∈ Lp(Rn) with 1 ≤ p < n/α, the singular convolution integrals

1
γ(α)

∫
Rn

1
‖x− y‖n−α

f(y) dy

converge absolutely for almost every x ∈ Rn.
(ii) Assuming that 1 < p < n/α, there exists a constant C = C(n, p, q) such

that
‖Iαf‖Lq ≤ C ‖f‖Lp , (1.75)

where the integrability exponent q is given by (1.74).
(iii) If f ∈ L1(Rn), we have

µ({x ∈ Rn : |Iαf(x)| > λ}) ≤
(

C ‖f‖L1

λ

)n/(n−α)

, (1.76)

for all λ > 0. In other words, the singular integral operators Iα are of
weak type (1, q) where 1/q = 1− α/n.

Proof. First, we define K(x) = 1/‖x‖n−α and hence∫
Rn

1
‖x− y‖n−α

f(y) dy = K ? f(x) .

We decompose the function K as a sum of an L1-function K1 and a bounded
function K∞ given by
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K1(x) =
{

K(x) if ‖x‖ ≤ ε
0 if ‖x‖ > ε ,

respectively, by

K∞(x) =
{

0 if ‖x‖ ≤ ε
K(x) if ‖x‖ > ε ,

In the decomposition K = K1 + K∞, we have

K ? f(x) = K1 ? f(x) + K∞ ? f(x) .

Young’s inequality then implies that

‖K1 ? f‖L1 ≤ ‖K1‖L1‖f‖Lp ,

for all f ∈ Lp(Rn). Denoting by p′ the Hölder conjugate exponent to p, we
observe that

‖K∞‖p′

Lp′ =
∫
‖x‖≥ε

(
1

‖x‖n−α

)p′

is finite, since from the assumption p < n/α it follows n/(n− α) < p′. Using
for the second convolution K∞ ? f again Young’s inequality, we deduce

‖K1 ? f‖L∞ ≤ ‖K1‖Lp′‖f‖Lp ,

showing the first statement (i) of the theorem.
Let δ > 0 and conclude from Hölder’s inequality that

∫
‖y−x‖≥δ

1
‖x− y‖n−α

|f(y)| dy ≤ C ‖f‖Lp

(∫ ∞

δ

(
1

rn−α

)p′

rn−1 dr

)1/p′

= C ‖f‖Lpδα−(n/p) .

where r = ‖y−x‖. Here we used that p < n/α. Using (1.79a) in Lemma 1.19
below, we then obtain

|Iαf(x)| ≤ C
(
δα Mf(x) + ‖f‖Lpδα−(n/p)

)
. (1.77)

In order to minimize the right-hand side, we choose

δ =
(

Mf(x)
‖f‖Lp

)−p/n

.

Inserting this in (1.77) gives the so-called Hedberg inequality

|Iαf(x)| ≤ C Mf(x)1−(αp/n)‖f‖αp/n
Lp , (1.78)

and also
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|Iαf(x)|q ≤ C Mf(x)p‖f‖(αp/n)q
Lp .

Integrating over Rn and using the Hardy-Littlewood Maximal Theorem 1.4,
we arrive at ∫

Rn

|Iαf(x)|q dx ≤ C ‖f‖(αp/n)q
Lp

∫
Rn

Mf(x)p dx

= C ‖f‖(αp/n)q
Lp ‖f‖p

Lp .

Thus, we end up with
‖Iαf‖Lq ≤ C ‖f‖Lp ,

for 1 < p < n/α. ut

Remark. Take a kernel K̄ ∈ Ln/(n−α)(Rn). Then Young’s inequality implies
that

‖K̄ ? f‖Lq̄ ≤ ‖K̄‖
L

n
n−α

‖f‖Lp ,

where
1
q̄

=
n− α

n
+

1
p
− 1 =

1
p
− α

n
.

Note that q̄ equals q defined in (1.74). – The singular kernels K defining
the Riesz potentials, however, miss barely the regularity condition of being
Ln/(n−α)-functions and thus Young’s inequality does not directly lead to the
estimate (1.75).

Lemma 1.19. Let 0 < α < n and δ, β > 0. Then, for all x ∈ Rn, we have∫
‖y−x‖≤δ

1
‖x− y‖n−α

|f(y)| dy ≤ Cδα Mf(x) , (1.79a)∫
‖y−x‖≥δ

1
‖x− y‖n+β

|f(y)| dy ≤ C

δβ
Mf(x) . (1.79b)

Proof. We decompose the domain of integration in the following way:∫
‖y−x‖≤δ

1
‖x− y‖n−α

|f(y)| dy =
∞∑

k=0

∫
δ2−(k+1)≤‖y−x‖≤δ2−k

1
‖x− y‖n−α

|f(y)| dy .

Then, we compute∫
‖y−x‖≤δ

1
‖x− y‖n−α

|f(y)| dy ≤
∞∑

k=0

(
δ

2k+1

)α−n ∫
‖y−x‖≤δ2−k

|f(y)| dy

=
∞∑

k=0

(
1
2

)α−n(
δ

2k

)α(
δ

2k

)−n ∫
B

δ2−k (x)

|f(y)| dy .

The right-hand side can be written differently as



1.1 27

ωnδα

(
1
2

)α−n ∞∑
k=0

(
1
2k

)α 1
ωn

(
δ

2k

)−n ∫
B

δ2−k (x)

|f(y)| dy .

Using the Definition 1.3 of the Hardy-Littlewood maximal function this is
bounded by

ωnδα

(
1
2

)α−n ∞∑
k=0

(
1
2k

)α

Mf(x) ,

showing (1.79a). ut

The critical cases p = 1 and p = n/α

In the case of p = 1, the exponent q equals n/(n − α) and we assume by
contradiction that the following estimate holds:

‖Iαf‖
L

n
n−α

≤ C ‖f‖L1 . (1.80)

Next, let (ρk)k∈N be a mollifying sequence, i.e., the supports of the smooth
functions ρk converge to the origin and ‖ρk‖L1 = 1, for all k ∈ N. From
(1.80), it then follows that

‖Iαρk‖L
n

n−α
≤ C ,

for all k ∈ N. Moreover, since ρk
k→∞−→ δ0 in D′, we have that

Iαρk(x) −→ 1
γ(α)

1
‖x‖n−α

(k −→∞) ,

for all x 6= 0. Applying dominated convergence, we conclude∥∥∥∥ 1
γ(α)

1
‖x‖n−α

∥∥∥∥
L

n
n−α

≤ C .

This implies that the function ‖x‖−n must be integrable over Rn which is
obviously false. Thus the starting assumption (1.80) can not be true.

In the case of p = n/α, we get q = ∞. For ε > 0, consider the function

f(x) =
1

‖x‖α log(1/‖x‖) α
n (1+ε)

χB1/2 .

It is not difficult to check that f ∈ Ln/α(Rn). However, because

Iαf(0) =
∫

B1/2

1
‖y‖n log(1/‖y‖) α

n (1+ε)
dy ,

we deduce that the boundedness of Iαf fails near the origin if α
n (1 + ε) ≤ 1.
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Theorem 1.20 (Sobolev Embedding Theorem). Let 1 ≤ p < ∞, k a
positive integer and

1
q

=
1
p
− k

n
.

Then, we have the following three statements:

(i) If in addition p < n/k, the embedding

W k,p(Rn) ⊂ Lq(Rn)

is continuous. In the particular case of k = 1, there exists a constant
C = C(n, p) such that

‖f‖Lq ≤ C ‖Df‖Lp , (1.81)

for all f ∈ W 1,p(Rn).
(ii)
(iii)

Remark. Theorem 1.18 can be interpreted as potential theoretic version of
the Sobolev embedding theorem. Note that the latter is however also true for
p = 1.

Proof. First, we consider the case k = 1. – Suppose that f ∈ C1
c (Rn) and

fix some x ∈ Rn. Moreover, consider the curve γ : [0,∞] −→ Rn given by
γ(r) = x + r θ where θ ∈ Rn is such that ‖θ‖ = 1. Then the integral of the
gradient ∇f of f over the curve γ equals∫ ∞

0

∇f
(
γ(r)

)
· γ′(r) dr =

∫ ∞

0

∇f(x + r θ) · θ dr = −f(x) , (1.82)

since f has compact support by assumption. Integration over the unit sphere
Sn−1(x) centered at x leads to

f(x) = − 1
ωn−1

∫
Sn−1(x)

(∫ ∞

0

∇f(x + r θ) · θ dr

)
dσ(θ) .

This can also be written as

f(x) = − 1
ωn−1

n∑
i=1

∫
Sn−1(x)

(∫ ∞

0

∂if(x + r θ)θi dr

)
dσ(θ)

= − 1
ωn−1

n∑
i=1

∫
Sn−1(x)

(∫ ∞

0

∂if(x + r θ)θi

rn−1
rn−1 dr

)
dσ(θ)

Next, we pass to rectangular coordinates y = x + r θ implying that

f(x) =
1

ωn−1

n∑
i=1

∫
Rn

(xi − yi)
‖x− y‖n

∂if(y) dy . (1.83)
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As direct consequence, we then have

|f(x)| ≤ C
n∑

i=1

∫
Rn

1
‖x− y‖n−1

|∂if(y)| dy

≤ C
n∑

i=1

I1

(
|∂if |

)
(x) . (1.84)

At this stage, we can apply Theorem 1.18 in the case α = 1, in order to
obtain

‖f‖Lq ≤ C
n∑

i=1

‖I1

(
|∂if |

)
‖Lq ≤ C

n∑
i=1

‖∂if‖Lp , (1.85)

for 1/q = 1/p − 1/n. The right-hand side being obviously bounded by the
W 1,p-norm of f , the estimate (1.81) follows in the case of f ∈ C1

c (Rn). ut





A

Before giving a detailed proof for the boundedness of the Fourier transform
of the truncated kernels satisfying the three hypothesis of Theorem 1.11, we
illustrate in the one-dimensional case how the boundedness fails if one of
these hypothesis does not hold.

a) Consider the kernel K(t) = 1/|t| and denote its truncation at ε > 0
by Kε (see (A.6) below). It is not difficult to check that the Hörmander
condition (1.35b) holds for K. The cancellation property (1.35c), however, is
not satisfied.

As shown in (A.8) below, the Fourier transform of Kε is given for a.e.
ξ ∈ R by

K̂ε(ξ) = lim
k→∞

∫
[−rk,rk]

e−i tξKε(t) dt

= lim
k→∞

∫
ε≤|t|≤rk

e−i tξ 1
|t|

dt . (A.1)

Next, we compute

K̂ε(ξ) = lim
k→∞

∫
ε≤|t|≤rk

cos(ξt)− i sin(ξt)
|t|

dt

= lim
k→∞

∫
ε≤|t|≤rk

cos(ξt)
|t|

dt

s=ξt
= 2 sgn(ξ) lim

k→∞

∫ rk|ξ|

ε|ξ|

cos(s)
s

ds . (A.2)

Thus, we have to calculate an integral of the form
∫

δ
∞ cos(s)/s ds. For this

purpose, the following decomposition is suitable:∫ ∞

δ

cos(s)
s

ds =
∫ π/4

δ

cos(s)
s

ds+
∫ π/2

π/4

cos(s)
s

ds+
∞∑

k=0

∫ (k+1)π+π/2

kπ+π/2

cos(s)
s

ds .

(A.3)
For the first integral on the right-hand side, we have∫ π/4

δ

cos(s)
s

ds ≥
√

2
2

∫ π/4

δ

1
s

ds ,
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which is logarithmic divergent in δ. The third integral on the right-hand side
of (A.3), however, is convergent as monotone decreasing alternating sequence.

b) Now, we consider the kernel K(t) = 1/t. In opposite to the previous
example a), the cancellation property (1.35c) is now also satisfied. Proceeding
as before, we obtain (compare with(A.2))

K̂ε(ξ) = −2i sgn(ξ) lim
k→∞

∫ rk|ξ|

ε|ξ|

sin(s)
s

ds .

This integral, being of the form
∫∞

δ
sin(s)/s ds, can be splitted into∫ ∞

δ

sin(s)
s

ds =
∫ π

δ

sin(s)
s

ds +
∞∑

k=1

∫ (k+1)π

kπ

sin(s)
s

ds . (A.4)

Since the function sin(s)/s is continuous at zero, the first integral converges.
The same holds for the second integral, by the same argument as before. – We
have thus established that the Fourier transform of the kernel b) is uniformly
bounded.

Remark. Roughly speaking, we can observe that the Hörmander condition
full-filled by both kernels a) and b) ensures the convergence of the integral at
infinity, whereas the cancellation property – only satisfied by the kernel b) –
is responsible for the convergence at small distances.

Lemma A.1. Let K : Rn −→ R be a measurable function such that

|K(x)| ≤ A

‖x‖n
, for ‖x‖ > 0 . (A.5a)∫

2‖y‖≤‖x‖

∣∣K(x− y)−K(x)
∣∣ dx ≤ B , for ‖y‖ > 0 . (A.5b)∫

R1<‖x‖<R2

K(x) dx = 0 , for 0 < R1 < R2 < ∞ .

(A.5c)

Moreover, for every ε > 0, we define

Kε(x) =
{

K(x) if ‖x‖ ≥ ε
0 if ‖x‖ < ε .

(A.6)

Then, there exists a constant C = C(n, A,B) such that

‖K̂ε‖∞ ≤ C . (A.7)

Proof. We first proof the lemma for the particular case ε = 1. – Note
that because of (A.5a), the truncated kernel K1 is an L2-function. Defining
Kr

1(x) = K1(x)χBr
(x), dominated convergence implies that Kr

1
r→∞−→ K1 in
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L2. By continuity of the Fourier transform, we also have that K̂r
1

r→∞−→ K̂1 in
L2. Hence, there exists a subsequence (K̂rk

1 )k∈N such that K̂rk
1 (ξ) k→∞−→ K̂1(ξ),

for a.e. ξ ∈ Rn. More precisely, since Kr
1 are L1-functions having an integral

representation for their Fourier transform, we have

lim
k→∞

K̂rk
1 (ξ) = lim

k→∞

∫
Rn

e−i x·ξK1(x)χBr
(x) dx

= lim
k→∞

∫
Brk

e−i x·ξK1(x) dx = K̂1(ξ) , (A.8)

for a.e. ξ ∈ Rn.
In a next step, let z ∈ Rn and fix ξ ∈ Rn. Consider then the function1

g(r) =

∣∣∣∣∣
∫

Br

e−i x·ξK1(x− z) dx−
∫

Br(z)

e−i x·ξK1(x− z) dx

∣∣∣∣∣
≤
∫

Br∆Br(z)

∣∣K1(x− z)
∣∣ dx .

For r ≥ ‖z‖, it is not difficult to check that the symmetric difference
Br∆Br(z) is contained in an annulus with radii r − ‖z‖/2 and r + ‖z‖/2.
Hence, there exists a constant C such that

µ
(
Br∆Br(z)

)
≤ C ‖z‖rn−1 . (A.9)

This estimate becomes obvious for r < ‖z‖. Moreover, in the case of r ≥ 2‖z‖,
we have

Br∆Br(z) ⊂ Rn \Br/2(z) . (A.10)

Thus, for every x ∈ Br∆Br(z) with r > 2‖z‖, it follows

∣∣K1(x− z)
∣∣ (A.5a)

≤ A

‖x− z‖n

(A.10)

≤ A

(r/2)n
.

From this it follows that

lim
r→∞

g(r) ≤ lim
r→∞

∫
Br∆Br(z)

∣∣K1(x− z)
∣∣ dx

≤ lim
r→∞

∫
Br∆Br(z)

A

(r/2)n
dx

(A.9)

≤ lim
r→∞

2nAC
‖z‖rn−1

rn
= 0 .

More explicitly, the last result can be written as

lim
r→∞

∫
Br

e−i x·ξK1(x− z) dx = lim
r→∞

∫
Br(z)

e−i x·ξK1(x− z) dx . (A.11)

1 As usual, we denote the symmetric difference E \ F ∪ F \ E of the two sets E
and F by E∆F .
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Next, setting w = x− z and using (A.8), we obtain that

lim
k→∞

∫
Brk

(z)

e−i x·ξK1(x− z) dx = lim
k→∞

e−i z·ξ
∫

Brk

e−i w·ξK1(w) dw

= e−i z·ξK̂1(ξ) ,

for a.e. ξ ∈ Rn. Inserting this in (A.11), we arrive at

lim
r→∞

∫
Br

e−i x·ξK1(x− z) dx = e−i z·ξK̂1(ξ) . (A.12)

In particular, for every ξ ∈ Rn, choosing

z = π
ξ

‖ξ‖2
(A.13)

such that e−i z·ξ = −1, it follows

lim
k→∞

∫
Brk

e−i x·ξK1(x− π ξ/‖ξ‖2) dx = −K̂1(ξ) . (A.14)

Combining (A.8) and (A.14), we end up with the following expression for the
Fourier transform of K1 at a.e. ξ ∈ Rn:

K̂1(ξ) = lim
k→∞

1
2

∫
Brk

e−i x·ξ
[
K1(x)−K1(x− π ξ/‖ξ‖2)

]
dx . (A.15)

With the help of the previous formula we will now show that K̂1 is uni-
formly bounded on Rn. – For this purpose, we first separate the integral on
the right-hand side of (A.15) into two integrals I1 and I2 given by

I1 =
∫

0≤‖x‖≤2π/‖ξ‖
e−i x·ξ

[
K1(x)−K1(x− π ξ/‖ξ‖2)

]
dx ,

respectively, by

I2 =
∫

2π/‖ξ‖≤‖x‖≤rk

e−i x·ξ
[
K1(x)−K1(x− π ξ/‖ξ‖2)

]
dx .

From the Hörmander condition (A.5b), we directly deduce that

I2 ≤
∫

2π/‖ξ‖≤‖x‖

∣∣K1(x)−K1(x− π ξ/‖ξ‖2)
∣∣ dx ≤ B ,

showing the boundedness of I2. – It remains to give an upper bound for I1

which is independent of ξ.
We write the integral I1 as
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I1 = I3 − I4

=
∫

0≤‖x‖≤2π/‖ξ‖
e−i x·ξK1(x) dx−

∫
0≤‖x‖≤2π/‖ξ‖

e−i x·ξK1(x− π ξ/‖ξ‖2) dx .

Obviously, by definition of K1 in (A.6), we see that I3 = 0 if 2π/‖ξ‖ ≤ 1. For
the other case 2π/‖ξ‖ > 1, the cancellation property (A.5c) implies that∫

1≤‖x‖≤2π/‖ξ‖
K1(x) dx = 0 .

This enables us to rewrite I3 as

I3 =
∫

1≤‖x‖≤2π/‖ξ‖

[
e−i x·ξ − 1

]
K1(x) dx . (A.16)

Since for the derivative of the smooth function φ(t) = e−i t, t ∈ R, we have
that |φ̇(t)| = 1, it follows that |e−i t − 1| ≤ |t|. Inserting this into (A.16), we
obtain

I3 ≤
∫

1≤‖x‖≤2π/‖ξ‖
‖ξ‖ ‖x‖ |K(x)| dx

(A.5a)

≤ A ‖ξ‖
∫

1≤‖x‖≤2π/‖ξ‖

‖x‖
‖x‖n

dx .

Using polar coordinates for the integration, the following estimate holds (re-
call that 2π/‖ξ‖ > 1):

I3 ≤ CA ‖ξ‖
∫ 2π/‖ξ‖

1

dρ = CA(2π − ‖ξ‖) ≤ 4CA π . (A.17)

Thus, in order to show the boundedness of I1, it remains to bound the integral
I4.

Consider the integral

I5 =
∫
‖x−z‖≤2π/‖ξ‖

e−i x·ξK1(x− z) dx ,

with z given by (A.13). By changing variables, we see that I5 = e−i z·ξI3.
Thus the estimate (A.17) implies

I5 ≤ 4CA π . (A.18)

On the other hand, since 2‖z‖ = 2π/‖ξ‖, it is easy to check that

|I4 − I5| ≤
∫

B2‖z‖∆B2‖z‖(z)

∣∣K1(x− z)
∣∣ dx .
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Using the results (A.9) and (A.10) for the symmetric difference, we get that
µ
(
B2‖z‖∆B2‖z‖(z)

)
≤ C‖z‖n and B2‖z‖∆B2‖z‖(z) ⊂ Rn\B‖z‖(z). From this,

we conclude

|I4 − I5| ≤
∫

B2‖z‖∆B2‖z‖(z)

∣∣K1(x− z)
∣∣ dx

(A.5a)

≤
∫

B2‖z‖∆B2‖z‖(z)

A

‖x− z‖n
dx

≤ A

∫
B2‖z‖∆B2‖z‖(z)

A

‖z‖n
dx ≤ CA . (A.19)

Putting (A.18) and (A.19), we obtain that I4 ≤ |I4−I5|+ |I5| ≤ CA+4CA π
and the boundedness of I4 follows. – In summary, we have thus shown that

‖K̂1‖∞ ≤ C . (A.20)

In a next step, we proof the lemma for general ε > 02. – Let ε > 0
and define the new kernel K ′(x) = εnK(εx). We claim that K ′ satisfy the
conditions of the lemma. – First, we observe that

|K ′(x)| = εn|K(εx)|
(A.5a)

≤ εn A

‖εx‖n
=

A

‖x‖n
.

For the Hörmander condition, we compute∫
2‖y‖≤‖x‖

∣∣K ′(x− y)−K ′(x)
∣∣ dx =

∫
2‖y‖≤‖x‖

εn
∣∣K(εx− εy)−K(εx)

∣∣ dx

z=εx=
∫

2ε‖y‖≤‖z‖

∣∣K(z − εy)−K(z)
∣∣ dz

(A.5b)

≤ B ,

and for the cancellation property∫
R1<‖x‖<R2

K ′(x) dx =
∫

R1<‖x‖<R2

εnK(εx) dx

z=εx=
∫

εR1<‖z‖<εR2

K(z) dz
(A.5c)

= 0 .

This shows the claim.
Next, we define

K ′
1(x) =

{
K ′(x) if ‖x‖ ≥ 1
0 if ‖x‖ < 1 .

(A.21)

2 The proof is straightforward for kernels of the particular form (1.55). In fact,
since they are homogeneous of degree −n, we have that ε−nK1(ε

−1x) = Kε(x).

Properties of the Fourier transform then directly imply that ‖cK1‖∞ = ‖cKε‖∞.
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Comparing with (A.6), we directly get that Kε(x) = ε−nK ′
1(ε−1x). From a

well-known result for the Fourier transform, it then follows that

K̂ε(ξ) = K̂ ′
1(εξ) .

As shown in the first part of the proof, the right-hand side is uniformly
bounded (see (A.20)). This concludes the proof of the lemma. ut




