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B1. Variance-Covariance Method

Further Assumptions

• We assume Xt+1 has a multivariate normal distribution (either

unconditionally or conditionally).

• We assume that the linearized loss in terms of risk factors is a

sufficiently accurate approximation of the loss. We consider the

problem of estimating the distribution of

L∆ = l∆[t](Xt+1),
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Theory Behind Method

Assume Xt+1 ∼ Nd(µ,Σ).

Assume the linearized loss operator (??) has been determined and

write this for convenience as

l∆[t](x) = −

(
c+

d∑
i=1

wixi

)
= −(c+ w′x).

The loss distribution is approximated by the distribution of

L∆ = l∆[t](Xt+1).

Now since Xt+1 ∼ Nd(µ,Σ)⇒ w′Xt+1 ∼ N(w′µ,w′Σw), we have

L∆ ∼ N(−c−w′µ,w′Σw).
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Implementing the Method

1. The constant terms in c and w are calculated

2. The mean vector µ and covariance matrix Σ are estimated from

data Xt−n+1, . . . ,Xt to give estimates µ̂ and Σ̂.

3. Inference about the loss distribution is made using distribution

N(−c−w′µ̂,w′Σ̂w)

4. Estimates of the risk measures VaRα and ESα are calculated from

the estimated distribution of L∆.
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Estimating Risk Measures

• Value-at-Risk. VaRα is estimated by

V̂aRα = −c−w′µ̂ +
√

w′Σ̂w · Φ−1(α).

• Expected Shortfall. ESα is estimated by

ÊSα = −c−w′µ̂ +
√

w′Σ̂w · φ(Φ−1(α))

1− α
.

Remark. For a rv Y ∼ N(0, 1) it can be shown that

E(Y | Y > Φ−1(α)) = φ(Φ−1(α))/(1− α)

where φ is standard normal density and Φ the df.

QRM 2010 38



Pros and Cons, Extensions

• Pros. In contrast to the methods that follow, variance-covariance

offers analytical solution with no simulation.

• Cons. Linearization may be crude approximation. Assumption of

normality may seriously underestimate tail of loss distribution.

• Extensions. Instead of assuming normal risk factors, the method

could be easily adapted to use multivariate Student t risk factors or

multivariate hyperbolic risk factors, without sacrificing tractibility.

(Method works for all elliptical distributions.)
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B2. Historical Simulation Method

The Idea

Instead of estimating the distribution of L = l[t](Xt+1) under some

explicit parametric model for Xt+1, estimate distribution of the loss

operator under empirical distribution of data Xt−n+1, . . . ,Xt.

The Method

1. Construct the historical simulation data

{L̃s = l[t](Xs) : s = t− n+ 1, . . . , t} (1)

2. Make inference about loss distribution and risk measures using

these historically simulated data: L̃t−n+1, . . . , L̃t.
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Historical Simulation Data: Percentage Losses
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Inference about loss distribution

There are various possibilities in a simulation approach:

• Use empirical quantile estimation to estimate the VaR directly from

the simulated data. But what about precision?

• Fit a parametric univariate distribution to L̃t−n+1, . . . , L̃t and

calculate risk measures from this distribution.

But which distribution, and will it model the tail?

• Use the techniques of extreme value theory to estimate the tail of

the loss distribution and related risk measures.
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Theoretical Justification

If Xt−n+1, . . . ,Xt are iid or more generally stationary, convergence

of empirical distribution to true distribution is ensured by suitable

version of law of large numbers.

Pros and Cons

• Pros. Easy to implement. No statistical estimation of the

distribution of X necessary.

• Cons. It may be difficult to collect sufficient quantities of relevant,

synchronized data for all risk factors. Historical data may not

contain examples of extreme scenarios.
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B3. The Monte Carlo Method

Idea

We estimate the distribution of L = l[t](Xt+1) under some explicit

parametric model for Xt+1.

In contrast to the variance-covariance approach we do not

necessarily make the problem analytically tractible by linearizing the

loss and making an assumption of normality for the risk factors.

Instead we make inference about L using Monte Carlo methods,

which involves simulation of new risk factor data.
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The Method

1. With the help of the historical risk factor data Xt−n+1, . . . ,Xt

calibrate a suitable statistical model for risk factor changes and

simulate m new data X̃
(1)
t+1, . . . , X̃

(m)
t+1 from this model.

2. Construct the Monte Carlo data

{L̃i = l[t](X̃
(i)
t+i), i = 1, . . . ,m}.

3. Make inference anout loss distribution and risk measures using the

simulated data L̃1, . . . , L̃m. We have similar possibilities as for

historical simulation.
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Pros and Cons

• Pros. Very general. No restriction in our choice of distribution for

Xt+1.

• Cons. Can be very time consuming if loss operator is difficult to

evaluate, which depends on size and complexity of portfolio.

Note that MC approach does not address the problem of

determining the distribution of Xt+1.
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B4. An Example With BMW-SIEMENS Data

> Xdata <- DAX[(5147:6146),c("BMW","SIEMENS")]

> X <- seriesData(Xdata)

# Set stock prices and number of units

> alpha <- cbind(1,10)

> Sprice <- cbind(844,76.9)

#1. Implement variance-covariance analysis

> weights <- alpha*Sprice

> muhat <- apply(X,2,mean)

> Sigmahat <- var(X)

> meanloss <- -sum(weights*muhat)

> varloss <- weights %*% Sigmahat %*% t(weights)

> VaR99 <- meanloss + sqrt(varloss)*qnorm(0.99)

> ES99 <- meanloss +sqrt(varloss)*dnorm(qnorm(0.99))/0.01

#2. Implement a historical simulation analysis

> loss.operator <- function(x,weights){

-apply((exp(x)-1)*matrix(weights,nrow=dim(x)[1],ncol=length(weights),byrow=T),1,sum)}

> hsdata <- loss.operator(X,weights)

> VaR99.hs <- quantile(hsdata,0.99)

> ES99.hs <- mean(hsdata[hsdata > VaR99.hs])
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Example Continued

#3a. Implement a Monte Carlo simulation analysis with Gaussian risk factors

> X.new <- rmnorm(10000,Sigma=Sigmahat,mu=muhat)

> mcdata <- loss.operator(X.new,weights)

> VaR99.mc <- quantile(mcdata,0.99)

> ES99.mc <- mean(mcdata[mcdata > VaR99.mc])

#3b. Implement alternative Monte Carlo simulation analysis with t risk factors

> model <- fit.t(X, nu=NA)

> X.new <- rmt(10000, df=model$nu, Sigma=model$Sigma, mu=model$mu)

> mcdatat <- loss.operator(X.new,weights)

> VaR99.mct <- quantile(mcdatat,0.99)

> ES99.mct <- mean(mcdatat[mcdatat > VaR99.mct])

#Draw pictures

> hist(hsdata,nclass=20,prob=T)

> abline(v=c(VaR99,ES99))

> abline(v=c(VaR99.hs,ES99.hs),col=2)

> abline(v=c(VaR99.mc,ES99.mc),col=3)

> abline(v=c(VaR99.mct,ES99.mct),col=4)
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Software for the example

The above code is for the software package S-PLUS.

You can also use the software package R, which is free. The code for

R is very similar.

For both S-PLUS and R, you need the QRMlib package; see

Alexander McNeil’s website

http://www.ma.hw.ac.uk/ mcneil/book/QRMlib.html
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Comparison of Risk Measure Estimates
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B5. Improving the Statistical Toolkit

Questions we will examine in the remainder of this course include

the following.

Multivariate Models

Are there alternatives to the multivariate normal distribution for

modelling changes in several risk factors?

We will expand our stock of multivariate models to include

multivariate normal mixture models and copula models. These will

allow a more realistic description of joint extreme risk factor changes.
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Improving the Statistical Toolkit II

Monte Carlo Techniques

How can we simulate dependent risk factor changes?

We will look in particular at ways of simulating multivariate risk

factors in non-Gaussian models.

We will not examine the following:

Conditional Risk Measurement

How can we implement a genuinely conditional calculation of risk

measures that takes the dynamics of risk factors into consideration?

We can consider methodology for modelling financial time series and

predicting volatility, particularly using GARCH models.
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