Laurent Bartoldi (Saarbruecken)
Propriété (T) abstract
Abstract:
La propriété (T) de Kazhdan s\'exprime, pour un groupe, en termes de sesreprésentations unitaires. Elle a toutefois de nombreuses conséquences etinterprétations qui n\'ont rien à voir avec les représentations unitaires. Jeparlerai un peu d\'applications : constructions de graphes expanseurs,génération de nombres aléatoires, et montrerai comment elle a été récemmentprouvée pour quelques exemples remarquables de groupes d\'automorphismes: automorphismes d\'un groupe libre de rang au moins quatre (avec l\'assistanced\'un ordinateur), ou automorphismes «modérés» d\'une algèbre universelle àau moins trois générateurs. Ce dernier exemple permet très facilement deprouver que les graphes de Cayley de groupes symétriques peuvent formerune famille de graphes expanseurs. Deux outils sont essentiels : uneinterprétation de (T) en termes de programmation linéaire et conique, et unenotion d\'«angle» entre sous-groupes d\'un groupe donné.C\'est en partie un travail en commun avec Martin Kassabov.
10:30 • Université de Genève, Conseil Général 7-9, Room 1-05
Joscha Fregin (Technische Universität Hamburg)
A Comparison of IMEX- Spectral Deferred Correction, Multistep and Runge-Kutta Methods for the rotating Shallow Water Equations abstract
Abstract:
Atmospheric motion covers a broad range of time- and spatial scales. Low and high pressure systems can influence us for days or even weeks and they extend up to hundreds of kilometers. In contrast, sound waves pass by in seconds with wavelengths of centimeters to meters. Implicit-explicit (IMEX) time stepping methods can help to avoid drastic limitations on the time step induced by the variety of scales without requiring computationally expensive fully nonlinear implicit solves.In our talk, we compare IMEX- Spectral Deferred Correction (SDC), multistep and Runge-Kutta time integrators for the Galewsky test case using the Python spectral method framework Dedalus. We demonstrate that SDC methods have superior stability properties and can provide shorter time to solution for comparable errors. In addition, we outline strategies that could further reduce simulation times by using the SDC residual to minimise the computational effort and by parallelising SDC "across the method". Finally, we discuss the interpretation of SDC as a Runge-Kutta method.
14:00 • Université de Genève, Conseil Général 7-9, Room 1-05
Lorenzo Garcia (Université de Neuchâtel)
Reduction of plane quartics and Cayley octads abstract
Abstract:
In this talk I will give a conjectural characterization of the stable reduction of plane quartics over local fields in terms of their Cayley octads. This results in p-adic criteria that efficiently give the stable reduction type amongst either the 42 possible types in the general case or the 32 possible types when the reduction is hyperelliptic. These criteria are in the vein of the new machinery of “cluster pictures" for hyperelliptic curves. We will also construct explicit families of quartic curves that realise all possible stable types, against which we have tested these criteria. We will give many numerical examples that illustrate how to use these criteria in practice.This is a join work with RAYMOND VAN BOMMEL, JORDAN DOCKING, VLADIMIR DOKCHITSER and REYNALD LERCIER.
15:00 • Université de Neuchâtel, Institut de Mathématiques, B103
Gabriel Arpino (University of Cambridge)
Statistical-Computational Tradeoffs in Mixed Sparse Linear Regression abstract
Abstract:
We consider the problem of mixed sparse linear regression with two components, where two sparse signals are observed through n unlabelled noisy linear measurements. Prior work has shown that the problem suffers from a significant statistical-to-computational gap, resembling other computationally challenging high-dimensional inference problems such as Sparse PCA and Robust Sparse Mean Estimation. We establish the existence of a more extensive computational barrier for this problem through the method of low-degree polynomials, but show that the problem is computationally hard only in a very narrow symmetric parameter regime. We identify smooth information-computation tradeoffs in this problem and prove that a simple linear-time algorithm succeeds outside of the narrow hard regime. To the best of our knowledge, this is the first thorough study of the interplay between mixture symmetry, signal sparsity, and their joint impact on the computational hardness of mixed sparse linear regression. This is joint work with Ramji Venkataramanan. https://proceedings.mlr.press/v195/arpino23a.html.
15:05 • ETH Zentrum, Rämistrasse 101, Zürich, Building HG, Room G 19.2
Richard Hain (Duke)
Hodge correlators, the Goldman-Turaev Lie bialgebra and Johnson homomorphisms abstract
Abstract:
Goncharov\'s Hodge correlators give a method for computing the periods of the real mixed Hodge structure on the unipotent fundamental group of a hyperbolic Riemann surface X. The Hodge correlator of X takes values in the cyclic quotient of the graded Lie bialgebra |T(H_1(X)|. The goal of the talk is to explain how Goncharov\'s work is related to Johnson homomorphisms and the Goldman--Turaev Lie bialgebra.
15:15 • Université de Genève, Section de mathématiques, 7-9 rue du Conseil-Général, Room 1-07