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Repulsive springs and approximating the maximum cut

A cut in a graph G = (V,E) is the set of edges connecting a set S ⊆ V to V \S, where

∅ ⊂ S ⊂ V . The Maximum Cut Problem is to find a cut with maximum cardinality. We

denote by maxcut(G) this maximum. (More generally, we can be given a weighting w : V →
R+, and we could be looking for a cut with maximum total weight. To keep things simple,

however, we restrict our introductory discussions to the unweighted case.)

The Maximum Cut Problem is NP-hard; one natural approach is to find an “approxi-

mately” maximum cut. Formulated in different terms, Erdős in 1967 described the follow-

ing simple heuristic algorithm for the Maximum Cut Problem: for an arbitrary ordering

(v1, . . . , vn) of the nodes, we color v1, v2, . . . , vn successively red or blue. For each i, vi is

colored blue iff the number of edges connecting vi to blue nodes among v1, . . . , vi−1 is less

than the number of edges connecting vi to red nodes in this set. Then the cut formed by the

edges between red and blue nodes contains at least half of all edges. In particular, we get a

cut that is at least half as large as the maximum cut.

There is an even easier randomized algorithm to achieve this approximation, at least in

expected value. Let us 2-color the nodes of G randomly, so that each node is colored red or

blue independently, with probability 1/2. Then the probability that an edge belongs to the

cut between red and blue is 1/2, and expected number of edges in this cut is |E|/2.

Both of these algorithms show that the maximum cut can be approximated from below

in polynomial time with a multiplicative error of at most 1/2. Can we do better? The

following strong negative result of Hastad [4] shows that we cannot get arbitrarily close to

the optimum:

Proposition 2.0.1 It is NP-hard to find a cut with more than (16/17)maxcut(G) ≈
.94maxcut(G) edges.

Building on results of Delorme, Poljak and Rendl [2, 6], Goemans and Williamson [3] give

a polynomial time algorithm that approximates the maximum cut in a graph with a relative

error of about 13%:

Theorem 2.0.2 One can find in polynomial time a cut with at least .878maxcut(G) edges.

What is this strange constant? From the proof below we will see that it can be defined

as 2c/π, where c is the largest positive number for which

arccos t ≥ c(1− t) (2.1)

for −1 ≤ t ≤ 1. This would seem like a random biproduct of a particular proof; however,

it turns out that if we use the complexity theoretic hypothesis called the “Unique Games

Conjecture” (stronger than P 6= NP ), then this constant is optimal (Khot, Kindler, Mossel,



2

O’Donnell [5]): no polynomial time algorithms can approximate the max cut with a better

approximation ratio for all graphs.

The algorithm of Goemans and Williamson makes use of the following geometric con-

struction. We want to find a representation i 7→ ui (i ∈ V ) of the nodes of the graph in the

unit sphere in Rd so that the following “energy” is maximized:

E(u) =
∑
ij∈E

1

4
(ui−uj)

2 =
1

2

∑
ij∈E

(1−uT
i uj).

We can think of replacing the rubber bands by (very peculiar) repulsive strings, which push

their endpoints apart with a force that increases proportionally with the length.

If we work in R1, then the problem is equivalent to the Maximum Cut problem: each node

is represented by either 1 or −1, and the edges between differently labeled nodes contribute

1 to the energy, the other edges contribute 0. Hence the maximum energy Emax is an upper

bound on the maximum size maxcut(G) of any cut.

Unfortunately, the argument above also implies that for d = 1, the optimal embedding is

NP-hard to find. While I am not aware of a proof of this, it is probably NP-hard for d = 2

and more generally, for any fixed d. The surprising fact is that for d ≥ n, such an embedding

can be found in polynomial time using semidefinite optimization.

Let X denote the V ×V matrix defined by Xij = uT
i uj . Then X satisfies the constraints:

X � 0, (2.2)

Xii = 1, (2.3)

and the energy E(u) can be expressed as

1

2

∑
ij∈E

(1−Xij). (2.4)

Conversely, if X is a V ×V matrix satisfying (2.2) and (2.3), then we can write it as a Gram

matrix of vectors in Rn, these vectors will have unit length, and (2.4) gives the energy.

The semidefinite optimization problem of maximizing (2.4), subject to (2.2) and (2.3),

can be solved in polynomial time (with an arbitrarily small relative error). So Emax is a

polynomial time computable upper bound on the size of the maximum cut.

How good is this bound? And how to construct an approximately optimum cut from

this representation? Here is the simple but powerful trick: take a random hyperplane H

through the origin in Rn. The partition of Rd given by H yields a cut in our graph. Since

the construction pushes adjacent points apart, one expects that the random cut will intersect

many edges.

To be more precise, let ij ∈ E and let ui,uj ∈ Sn−1 be the corresponding vectors in

the representation constructed above. It is easy to see that the probability that a random
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hyperplane H through 0 separates ui and uj is (arccosuT
i uj)/π. Thus the expected number

of edges intersected by H is

∑
ij∈E

arccosuT
i uj

π
≥

∑
ij∈E

c
1−uT

i uj

π
=

2c

π
Emax ≥

2c

π
maxcut(G).

This completes the analysis of the algorithm.

One objection to the above algorithm could be that it uses random numbers. In fact, the

algorithm can be derandomized by well established but non-trivial techniques. We do not

discuss this issue here; see e.g. [1], Chapter 15 for a survey of derandomization methods.
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