
Chapter 3

Coin representation

3.1 Koebe’s theorem

We prove Koebe’s important theorem on representing a planar graph by touching circles [5],

and its extension to a Steinitz representation, the Cage Theorem.

Theorem 3.1.1 (Koebe’s Theorem) Let G be a 3-connected planar graph. Then one can

assign to each node i a circle Ci in the plane so that their interiors are disjoint, and two

nodes are adjacent if and only if the corresponding circles are tangent.

Figure 3.1: The coin representation of a planar graph

If we represent each of these circles by their center, and connect two of these centers by a

segment if the corresponding circles touch, we get a planar map, which we call the tangency

graph of the family of circles. Koebe’s Theorem says that every planar graph is the tangency

graph of a family of openly disjoint circular discs.

Koebe’s Theorem was rediscovered and generalized by Andre’ev [1, 2] and Thurston [13].

One of these strengthens Koebe’s Theorem in terms of a simultaneous representation of a

3-connected planar graph and of its dual by touching circles. To be precise, we define a double
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2 CHAPTER 3. COIN REPRESENTATION

circle representation in the plane of a planar map G as two families of circles, (Ci : i ∈ V )

and (Dp : p ∈ V ∗) in the plane, so that for every edge ij, bordering countries p and q, the

following holds: the circles Ci and Cj are tangent at a point xij ; the circles Dp and Dq are

tangent at the same point xij ; and the circles Dp and Dq intersect the circles Ci and Cj at

this point orthogonally. Furthermore, the interiors of the circular discs Ĉi bounded by the

circles Ci are disjoint and so are the disks D̂j, except that the circle Dp0
representing the

outer country contains all the other circles Dp in its interior.

Such a double circle representation has other useful properties.

Proposition 3.1.2 (a) For every bounded country p, the circles Dp and Ci (i ∈ V (p)) cover

p. (b) If i ∈ V is not incident with p ∈ V ∗, then Ĉi and D̂p are disjoint.

The proof of these facts is left to the reader as an exercise.

Figure 3.2: Two sets of circles, representing (a) K4 and its dual (which is another
K4); (b) a planar graph and its dual.

Figure 3.2(a) shows this double circle representation of the simplest 3-connected planar

graph, namely K4. For one of the circles, the exterior domain should be considered as the

disk it bounds. The other picture shows part of the double circle representation of a larger

planar graph.

The main theorem is this chapter is that such representations exist.

Theorem 3.1.3 Every 3-connected planar map G has a double circle representation in the

plane.

The proof is contained in the next sections.

3.1.1 Conditions on the radii

We fix a triangular country p0 in G or G∗ (say, G) as the outer face; let a, b, c be the nodes of

p0. For every node i ∈ V , let F (i) denote the set of bounded countries containing i, and for

every country p, let V (p) denote the set of nodes on the boundary of p. Let U = V ∪V ∗ \{p0},
and let J denote the set of pairs ip with p ∈ V ∗ \{p0} and i ∈ V (p).
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Figure 3.3: Notation.

Let us start with assigning a positive real number ru to every node u ∈ U . Think of this

as a guess for the radius of the circle representing u (we don’t guess the radius for the circle

representing p0; this will be easy to add at the end). For every ip ∈ J , we define

αip = arctan
rp
ri

and αpi = arctan
ri
rp

=
π

2
−αip. (3.1)

Suppose that i is an internal node. If the radii correspond to a correct double circle

representation, then 2αip is the angle between the two edges of the country p at i (Figure

3.3). Since these angels fill out the full angle around i, we have

∑

V (p)∋i

arctan
rp
ri

= π (i ∈ V \{a, b, c}). (3.2)

We can derive a similar conditions for the external nodes and the countries:

∑

V (p)∋i

arctan
rp
ri

=
π

6
(i ∈ {a, b, c}), (3.3)

and

∑

i∈V (p)

arctan
ri
rp

= π (p ∈ V ∗ \{p0}). (3.4)

The key to the construction of a double circle representation is that these conditions are

sufficient.

Lemma 3.1.4 Suppose that the radii ru > 0 (u ∈ U) are chosen so that (3.2), (3.3) and

(3.4) are satisfied. Then there is a double circle representation with these radii.

Proof. Let us construct two right triangles with sides ri and rp for every ip ∈ J , one with

each orientation, and glue these two triangles together along their hypotenuse to get a kite

Kip. Starting from a node i1 of p0, put down all kites Ki1p in the order of the corresponding

countries in a planar embedding of G. By (3.3), these will fill an angle of π/3 at i1. Now
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proceed to a bounded country p1 incident with i1, and put down all the remaining kites Kp1i

in the order in which the nodes of p1 follow each other on the boundary of p1. By (3.4),

these triangles will cover a neighborhood of p1. We proceed similarly to the other bounded

countries containing i1, then to the other nodes of p1, etc. The conditions (3.2), (3.3) and

(3.4) will guarantee that we tile a regular triangle.

Let Ci be the circle with radius ri about the position of node i constructed above, and

define Dp analogously. We still need to define Dp0
. It is clear that p0 is drawn as a regular

triangle, and hence we necessarily have ra = rb = rc. We define Dp0
as the inscribed circle

of the regular triangle abc.

It is clear from the construction that we get a double circle representation of G. �

Of course, we cannot expect conditions (3.2), (3.3) and (3.4) to hold for an arbitrary choice

of the radii ru. In the next sections we will see three methods to construct radii satisfying

the conditions in Lemma 3.1.4; but first we give two simple lemmas proving something like

that—but not quite what we want.

For a given assignment of radii ru (u ∈ U), consider the defects of the conditions in

Lemma 3.1.4. To be precise, for a node i 6= a, b, c, define the defect by

δi =
∑

p∈F (i)

αip−π.

For a boundary node i ∈ {a, b, c}, we modify this definition:

δi =
∑

p∈F (i)

αip−
π

6
.

If p is a bounded face, we define its defect by

δp =
∑

i∈V (p)

αpi−π.

(Note that these defects may be positive or negative.) While of course an arbitrary choice of

the radii ru will not guarantee that all these defects are 0, the following lemma shows that

this is true at least “one the average”:

Lemma 3.1.5 For every assignment of radii, we have
∑

u∈U

δu = 0.

Proof. From the definition,

∑

u∈U

δu =
∑

i∈V \{a,b,c}


 ∑

p∈F (i)

αip−π


+

∑

i∈{a,b,c}


 ∑

p∈F (i)

αip−
π

6




+
∑

p∈V ∗\{p0}


 ∑

i∈V (p)

αpi−π


 .
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Every pair ip ∈ J contributes αip+αpi = π/2. Since |J | = 2m−3, we get

(2m−3)
π

2
−(n−3)π−3

π

6
−(f−1)π = (m−n−f+2)π.

By Euler’s formula, this proves the lemma. �

Our second preliminary lemma shows that conditions (3.2), (3.3) and (3.4), considered as

linear equations for the αip, can be satisfied.

Lemma 3.1.6 Let G be a planar map with a triangular unbounded face p0 = abc. Then

there are real numbers 0 < βip < π/2 (p ∈ V ∗ \{p0}, i ∈ V (p)) such that

∑

V (p)∋i

βip = π (i ∈ V \{a, b, c}, (3.5)

∑

V (p)∋i

βip =
π

6
(i ∈ {a, b, c}, (3.6)

and

∑

i∈V (p)

(
π

2
−βip) = π (p ∈ V ∗ \{p0}. (3.7)

We don’t claim here that the solutions are obtained in the form (3.1)!

Proof. Consider any straight line embedding of the graph (say, the Tutte rubber band

embedding), with p0 nailed to a regular triangle. For i ∈ V (p), let βpi denote the angle of

the polygon p at the vertex i. Then the conclusions are easily checked. �

3.1.2 Reducing a defect function

In order to use the previous lemmas to prove Theorem 3.1.3, we have to construct find radii

for the circles so that the defects are 0. There are several ways to do so. The proof we

describe first is due to Colin de Verdière [4]. This is perhaps the shortest known proof, but

it starts with a rather “ad hoc” step. One advantage is that we can use an “off the shelf”

optimization algorithm for smooth convex functions to compute the representation. More

combinatorial but lengthier proofs will be described in the next two sections.

Proof. We are going to look for the radii in the form ru = exu; this will guarantee that

they are positive, and it also motivates at least the elements of the following definition:

φ(x) :=

x∫

−∞

arctan(et) dt.
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It is easy to verify that φ is monotone increasing, convex, and

φ(x) = max
{
0,

π

2
x
}
+O(1). (3.8)

Let x ∈ R
V , y ∈ R

V ∗

. Using the numbers βip from Lemma 3.1.6, consider the function

F (x, y) =
∑

i,p: p∈F (i)

(
φ(yp−xi)−βip(yp−xi)

)
.

Claim 1 If |x|+ |y| → ∞ while (say) x1 = 0, then F (x, y) → ∞.

We need to fix one of the xi, since if we add the came value to each xi and yp, then the

value of F does not change. To prove the claim, we use (3.8):

F (x, y) =
∑

i,p: p∈F (i)

(
φ(yp−xi)−βip(yp−xi)

)

=
∑

i,p: p∈F (i)

(
max

{
0,

π

2
(yp−xi)

}
−βip(yp−xi)

)
+O(1)

=
∑

i,p: p∈F (i)

(
max

{
−βip(yp−xi),

(π
2
−βip

)
(yp−xi)

})
+O(1).

Since −βip is negative but π
2 −βip is positive, each term here is nonnegative, and a given

term tends to infinity if |xi−yp| → ∞. If x1 remains 0 but |x|+ |y| → ∞, then at least one

difference |xi−yp| must tend to infinity. This proves the Claim.

It follows from this Claim that F attains its minimum at some point (x, y), and here

∂

∂xi
F (x, y) =

∂

∂yp
F (x, y) = 0 (i ∈ V, p ∈ V ∗ \{p0}). (3.9)

Claim 2 The radii

ri = exi (i ∈ V ) and rp = eyp (p ∈ V ∗)

satisfy the conditions of Lemma 3.1.4.

Let i be an internal node, then

∂

∂xi
F (x, y) = −

∑

p∈F (i)

φ′(yp−xi)+
∑

p∈F (i)

βip = −
∑

p∈F (i)

arctan(eyp−xi)+π,

and so by (3.9),

∑

p∈F (i)

arctan
rp
ri

=
∑

p∈F (i)

arctan(eyp−xi) = π. (3.10)

This proves (3.2). Conditions (3.3) and (3.4) follow by a similar computation.

Applying Lemma 3.1.4 completes the proof. �
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3.1.3 The range of defects

The second proof is non-algorithmic, but it motivates the third, which is in a sense the most

natural. We define a mapping Φ : (0,∞)U → R
U by

Φ : (ru : u ∈ U) 7→ (δu : u ∈ U). (3.11)

The defect vector (δu : u ∈ U) depends on the ratios of the values ru only; hence we may

restrict our attention to positive radii satisfying
∑

u∈U ru = 1. Then the domain of the map

δ is the interior of the (n+f−2)-dimensional simplex Σ defined by

xu ≥ 0,
∑

u∈U

xu = 1.

Our next goal is to determine the range. By Lemma 3.1.4, all we need to show is that this

range contains the origin.

We already know by Lemma 3.1.5 that the range of the mapping δ lies in the hyperplane

defined by
∑

u δu = 0. We can derive some inequalities too. For S ⊆ U , define J [S] = {ip ∈
J : i, p ∈ S} and

f(S) =
1

2
|J [S]|−|S|+ 5

6
|S∩{a, b, c}|.

Lemma 3.1.7 (a) f(∅) = f(U) = 0; (b) f(S) < 0 for every set ∅ ⊂ S ⊂ U .

Proof. The proof of (a) is left to the reader as Exercise 3.4.2.

To prove (b), consider the numbers βpi in Lemma 3.1.6, and let βip = π−βpi. We can do

the following computation:

π|J(S)| =
∑

ip∈J
i,p∈S

(βpi+βip)

<
∑

i∈S∩V ∗

∑

p∈V (i)

βip+
∑

p∈S∩V

∑

i∈F (p)

βpi

= 2π|S|− 5

3
π|S∩{a, b, c}|.

(The strict inequality comes from the fact that there is at least one pair ip where exactly

one element belongs to S, and here we omitted a positive term βip or βpi.) This proves the

Lemma. �

Lemma 3.1.8 For every set ∅ ⊂ S ⊂ U ,

∑

u∈S

δu > f(S)π.
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Proof. We have

∑

u∈S

δu =
∑

p∈S∩V

∑

i∈F (i)

αpi+
∑

i∈S∩V ∗

∑

p∈V (i)

αip

−|I(S)|π−|S∩(V \{a, b, c}|π−|S∩{a, b, c}|π
6

=
∑

ip∈J
i∈S,p/∈S

αip+
∑

ip∈J
i/∈S,p∈S

αpi+
∑

ip∈J[S]

(αip+αpi) (3.12)

−|I(S)|π−|S∩(V \{a, b, c}|π−|S∩{a, b, c}|π
6

=
∑

ip∈J
i∈S,p/∈S

αip+
∑

ip∈J
i/∈S,p∈S

αpi+f(S)π.

Since the first two terms are nonnegative, and (as in the previous proof) at least one is

positive, the lemma follows. �

Now we are prepared to describe the range of defects. Let P denote the polyhedron in

R
U defined by

∑

u∈U

xu = 0, (3.13)

∑

u∈S

xu ≥ d(S)π (∅ ⊂ S ⊂ U). (3.14)

Clearly P is bounded.

Lemma 3.1.9 The origin is in the relative interior of P . The range of Φ is contained in P .

Proof. The first statement follows by Lemma 3.1.8. For a vector in the range of Φ, equation

(3.13) follows by Lemma 3.1.5, while inequality (3.14) follows by Lemma 3.1.7. �

Lemma 3.1.10 The map Φ is injective.

Proof. Consider two different choices r and r′ of radii. Let S be the set of elements of

U for which r′u/ru is maximum, then S is a nonempty proper subset of U . There is a pair

ip ∈ J (i ∈ V ∗, p ∈ V ) such that exactly one of i and p is in S; say, for example, that i ∈ S

and p /∈ S. Then for every pair iq, q ∈ V (i), we have r′q/r
′
i ≤ rq/ri, and strict inequality

holds if q = p. Thus

∑

q∈V (i)

arctan
r′q
r′i

<
∑

q∈V (i)

arctan
rq
ri
,

showing that δi(r
′) < δi(r), which proves the lemma. �

The next (technical) lemma is needed whenever we construct some assignment of radii as

a limit of other such assignments.
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Lemma 3.1.11 Let r(1), r(2), · · · ∈ R
U be a sequence of assignments of radii, and let δ(k) =

Φ(r(k)). Suppose that for each u ∈ U , r
(k)
u → ρu as k → ∞. Let S = {u : ρu > 0}. Then

∑

u∈S

δ(k)u → d(S)π (k → ∞).

(We note that the right hand side is negative by Lemma 3.1.7.)

Proof. Recall the computation (3.12). The terms that result in strict inequality are αpi

with p ∈ S, i /∈ S, and αip with i ∈ S, p /∈ S. These terms tend to 0, so the slack in (3.13)

tends to 0. �

Now we are able to prove the main result in this section.

Theorem 3.1.12 The range of Φ is exactly the interior of P .

Proof. Suppose not, and let y1 be an interior point in P not in the range of ∆. Let y2 be

any point in the range. The segment connecting y1 and y2 contains a point y which is an

interior point of P and on the boundary of the range of ∆. Consider a sequence (r1, r2, . . . )

with ∆(rk) → y. We may assume (by compactness) that (rk) is convergent. If (rk) tends to

an interior point r of Σ, then the fact that ∆ is continuous, injective, and dim(P ) = dim(Σ)

imply that the image of a neighborhood of r covers a neighborhood of y, a contradiction. If

(rk) tends to a boundary point of Σ, then by Lemma 3.1.11, δ(rk) tends to the boundary of

Σ, a contradiction. �

Since the origin is in the interior of P by Corollary 3.1.9, this implies that the origin is

in the range of Φ. This completes the proof of Theorem 3.1.3.

3.1.4 Reducing the defect

The proof we saw is in the previous section an existence proof; it does not give an algorithm

to construct the circles. In this section we describe an algorithmic proof. We’ll need most of

the lemmas proved above in the analysis of the algorithm.

We measure the “badness” of the assignment of the radii by the error

E =
∑

u∈U

δ2u.

We want to modify the radii so that we reduce the error. The key observation is the following.

Let i be a country with δi > 0. Suppose that we increase the radius ri, while keep the other

radii fixed. Then αip decreases for every p ∈ V (i), and correspondingly αpi increases, but

nothing else changes. Hence δi decreases, δp increases for every p ∈ V (i), and all the other

defects remain unchanged. Since the total defect remains the same by Lemma 3.1.5, we can

describe this as follows: if we increase a radius, some of the defect of that node is distributed
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to its neighbors (in the G♦ graph). Note, however, that it is more difficult to describe in

what proportion this defect is distributed (and we’ll try to avoid to have to describe this).

How much of the defect of i can be distributed this way? If ri → ∞, then αip → 0 for

every p ∈ V (i), and so δi → −π. This means that we “overshoot”. So we can distribute at

least the positive part of the defect this way.

The same argument applies to the defects of nodes, and we can distribute negative defects

similarly by decreasing the appropriate radius. Let us immediately renormalize the radii, so

that we maintain that
∑

u ru = 1. Recall that this does not change the defects.

There are many schemes that can be based on this observation: we can try to distribute

the largest (positive) defect, or a positive defect adjacent to a node with negative defect etc.

Brightwell and Scheinerman [3] prove that if we repeatedly pick any element u ∈ U with

positive defect and distribute all its defect, then the process will converge to an assignment

of radii with no defect. There is a technical hurdle to overcome: since the process is infinite,

one must argue that no radius tends to 0 or ∞. We give a somewhat different argument.

Consider a subset ∅ ⊂ S ⊂ U , and multiply each radius ru, u /∈ S, by the same factor

0 < λ < 1. Then αip is unchanged if both i and p are in S or outside S; if i ∈ S and p /∈ S

then αip decreases while αpi increases; and similarly the other way around. Hence δu does

not increase if u ∈ S and strictly decreases if u ∈ S has a neighbor outside S. Similarly, δu

does not decrease if u ∈ U \S and strictly increases if u ∈ U \S has a neighbor in S.

Let ∅ ⊂ S ⊂ U be a set such that minu∈S δu > maxU∈U\S δu. We claim that we can

decrease the radii in U \S until one of the δu, u ∈ S, becomes equal to a δv, v /∈ S. If not,

then (after renormalization) the radii in U \S would tend to 0 while still any defect in S

would be larger than any defect in U \S. But it follows by Lemmas 3.1.7 and 3.1.11) that

in this case the total defect in S tends to a negative value, and so the total defect in U \S
tends to a positive value. So there is an element of S with negative defect and an element of

U \S with positive defect, which is a contradiction.

Let t be this common value, and let δ′u be the new defects. Then the change in the error

is

E −E ′ =
∑

u∈U

δ2u−
∑

u∈U

δ′u
2

Using Lemma 3.1.5, we can write this in the form

E −E ′ =
∑

u∈U

(δu−δ′u)
2+2

∑

u∈U

(t−δ′u)(δ
′
u−δu).

By the choice of t, we have t ≤ δ′u and δu ≥ δ′u for u ∈ S and t ≥ δ′u and δu ≤ δ′u for

u /∈ S. Hence the second sum in E −E ′ is nonnegative, while the first is positive. So the error

decreases; in fact, it decreases by at least (δu− t)2+(δv− t)2 ≥ (δu−δv)
2/4 for some u ∈ S

and v ∈ U \S. If we choose the largest gap in the sequence of the δu ordered decreasingly,
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then this gain is at least

(
1

m
(max δu−min δu)

)2

≥
(

1

m

√
E
m

)2

=
E
m3

.

Thus we have

E(r′) ≤
(
1− 1

m3

)
E(r). (3.15)

If we iterate this procedure, we get a sequence of vectors r1, r2, · · · ∈ Σ for which E(rk) →
0. No subsequence of the rk can tend to a boundary point of Σ. Indeed, by Lemma 3.1.11,

for such a sequence δ(r(k)) would tend to the boundary of P , and so by Corollary 3.1.9, the

error would stay bounded away from 0. Similarly, if a subsequence tends to an interior point

r ∈ Σ, then δ(r) = 0, and by Claim 3.1.10, this limit is unique. It follows that there is a

(unique) point r in the interior of Σ with δ(r) = 0, and the sequence rk tends to this point.

3.2 Formulation in space

3.2.1 The Cage Theorem

One of the nicest consequences of the coin representation (more exactly, the double circle

representation in Theorem 3.1.3) is the following theorem, due to Andre’ev [1], which is a

rather far reaching generalization of the Steinitz Representation Theorem.

Theorem 3.2.1 (The Cage Theorem) Every 3-connected planar graph can be represented

as the skeleton of a convex 3-polytope such that every edge of the polytope touches a given

sphere.

Figure 3.4: A convex polytope in which every edge is tangent to a sphere creates
two families of circles on the sphere.
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Proof. Let G = (V,E) be a 3-connected planar map, and let p0 be its unbounded face. Let

(Ci : i ∈ V ) and Dj : j ∈ V ∗) be a double circle representation of G in the plane. Take a

sphere S touching the plane at the center c of Dq0 , where q0 ∈ V ∗ \{p0}. Consider the point

of tangency as the south pole of S. Project the plane onto the sphere from the north pole

(the antipode of c). This transformation, called inverse stereographic projection, has many

useful properties: it maps circles and lines onto circles, and it preserves the angle between

them. It will be convenient to choose the radius of the sphere so that the image of Dq0 is

contained in the southern hemisphere, but the image of the interior of Dp0
covers more than

a hemisphere.

Let (C′
i : i ∈ V ) and D′

j : j ∈ V ∗) be the images of the circles in the double circle

representation. We define caps (Ĉi : i ∈ V ) and D̂j : j ∈ V ∗) with boundaries Ci and Dj ,

respectively: we assign the cap not containing the north pole to every circle except to Dp0
,

to which we assign the cap containing the north pole. This way we get two families of caps

on the sphere. Every cap covers less than a hemisphere, since the caps Ĉi (i ∈ V ) and D̂p

(p ∈ V ∗ \{p0, q0}) miss both the north pole and the south pole, and D̂p0
and D̂q0 have this

property by the choice of the radius of the sphere. The caps Ĉi are openly disjoint, and so

are the caps D̂j . Furthermore, for every edge ij ∈ E(G), the caps Ĉi and Ĉj are tangent to

each other, and so are the caps D̂p and D̂q representing the endpoints of the dual edge pq,

the two points of tangency are the same, and C′
i and C′

j are orthogonal to D′
p and D′

q. The

tangency graph of the caps Ci, drawn on the sphere by arcs of large circles, is isomorphic to

the graph G.

This nice picture translates into polyhedral geometry as follows. Let ui be the point

above the the center of Ĉi whose “horizon” is the circle C′
i, and let vp be defined analogously

for p ∈ V ∗. Let ij ∈ E(G), and let pq be the corresponding edge of G∗. The points ui and

uj are contained in the tangent of the sphere that is orthogonal to the circles C′
i and C′

j and

their common point x; this is clearly the same as the common tangent of D′
p and D′

q at x.

The plane vT

px = 1 intersects the sphere in the circle D′
p, and hence it contains it tangents,

in particular the points ui and uj , and similarly, all points uk where k is a node of the facet

p. Since the cap D̂p is disjoint from Ĉk if k is not a node of the facet p, we have vT

puk < 1

for every such node.

This implies that the polytope P = conv{ui : i ∈ V } is contained in the polyhedron

P ′ = {x ∈ R
3 : vT

px ≤ 1 ∀p ∈ V ∗}. Furthermore, every inequality vT

px ≤ 1 defines a facet

Fp of P with vertices ui, where i is a node of p. Every ray from the origin intersects one of

the countries p in the drawing of the graph on the sphere, and therefore it intersects Fp. This

implies that P has no other facets, and thus P = P ′. It also follows that every edge of P is

connecting two vertices ui and uj , where ij ∈ E, and hence the skeleton of P is isomorphic

to G and every edge is tangent to the sphere. �
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Conversely, the double circle representation follows easily from this theorem, and the

argument is obtained basically by reversing the proof above. Let P be a polytope as in the

theorem. It will be convenient to assume that the center of the sphere is in the interior of

P ; this can be achieved by an appropriate projective transformation of the space (we come

back to this in Section 3.2.2).

We start with constructing a double circle representation on the sphere: each node is rep-

resented by the horizon on the sphere when looking from the corresponding vertex, and each

facet is represented by the intersection of its plane with the sphere (Figure 3.4). Elementary

geometry tells us that the circles representing adjacent nodes touch each other at the point

where the edge touches the sphere, and the two circles representing the adjacent countries

also touch each other at this point, and they are orthogonal to the first two circles. Further-

more, the interiors (smaller sides) of the horizon-circles are disjoint, and the same holds for

the facet-circles. These circles can be projected to the plane by stereographic projection. It

is easy to check that the projected circles form a double circle representation.

Remark 3.2.2 There is another polyhedral representation that can be read off from the

double circle representation. Let (Ci : i ∈ V ) and Dp : p ∈ V ∗) form a double circle

representation of G = (V,E) on the sphere S, and for simplicity assume that interiors (smaller

sides) of the Ci are disjoint, and the same holds for the interiors of the Dp. We can represent

each circle Ci as the intersection of a sphere Ai with S, where Ai is orthogonal to S. Similarly,

we can write Dp = Bp∩S, where Bp is a sphere orthogonal to S. Let Âi and B̂p denote the

corresponding closed balls.

Let P denote the set of points in the interior of S that are not contained in any Âi and

B̂p. This set is open and nonempty (since it contains the origin). The balls Âi and B̂p cover

the sphere S, and even their interiors do so with the exception of the points xij where two

circles Ci and Cj touch. It follows that P is a domain whose closure P contains a finite

number of points of the sphere S. It also follows that no three of the sphere Ai and Bp have

a point in common except on the sphere S. Hence those points in the interior of S that

belong to two of these spheres form circular arcs that go from boundary to boundary, and

it is easy to see that they are orthogonal to S. For every incident pair (i, p) (i ∈ V, p ∈ V ∗)

there is such an “edge” of P . The “vertices” of P are the points xij , which are all on the

sphere S, and together with the “edges” as described above they form a graph isomorphic to

the medial graph G+ of G.

All this translates very nicely, if we view the interior of S as a Poincaré model of the

3-dimensional hyperbolic space. In this model, spheres orthogonal to S are “planes”, and

hence P is a polyhedron. All the “vertices” of P which are at infinity, but if we allow them,

then P is a Steinitz representation of G+ in hyperbolic space. Every dihedral angle of P is

π/2.

Conversely, a representation of G+ in hyperbolic space as a polyhedron with dihedral
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angles π/2 and with all vertices at infinity gives rise to a double circle representation of G

(in the plane or on the sphere, as you wish). Andreev gave a general necessary and sufficient

condition for the existence of representation of a planar graph by a polyhedron in hyperbolic

3-space with prescribed dihedral angles. From this representation, he was able to derive

Theorems 3.2.1 and 3.1.3.

Schramm [10] proved the following very general extension of Theorem 3.2.1, for whose

proof we refer to the paper.

Theorem 3.2.3 (Caging the Egg) For every smooth strictly convex body K in R
3, every

3-connected planar graph can be represented as the skeleton of a polytope in R
3 such that all

of its edges touch K. �

3.2.2 Conformal transformations

The double circle representation of a planar graph is uniquely determined, once a triangular

unbounded country is chosen and the circles representing the nodes of this triangular coun-

try are fixed. This follows from Lemma 3.1.10. Similar assertion is true for double circle

representations in the sphere. However, in the sphere there is no difference between faces,

and we may not want to “normalize” by fixing a face. Often it is more useful to apply a

circle-preserving transformation that distributes the circles on the sphere in a “uniform” way.

The following Lemma shows that this is possible with various notions of uniformity.

Lemma 3.2.4 Let F : (B3)n → B3 be a continuous map with the property that whenever

n−2 of the vectors ui are equal to v ∈ S2 then vTF (u1, . . . ,un) ≥ 0. Let (C1, . . . , Cn) be a

family of openly disjoint caps on the sphere. Then there is a circle preserving transformation

τ of the sphere such that F (v1, . . . ,vn) = 0, where vi is the center of τ(Ci).

Examples of functions F to which this lemma applies are the center of gravity of u1, . . . ,un,

or the center of gravity of their convex hull, or the center of the inscribed ball of this convex

hull.

Proof. For every interior point x of the unit ball, we define a conformal (circle-preserving)

transformation τx of the unit sphere such that if xk → p ∈ S2, then τxk
(y) → −p for every

y ∈ S2, y 6= p.

We can define such maps as follows. For x = 0, we define τx = idB. If x 6= 0, then we

take a tangent plane T at x0, and project the sphere stereographically onto T ; blow up the

plane from center x0 by a factor of 1/(1−|x|); and project it back stereographically to the

sphere. Let vi(x) denote the center of the cap τx(Ci). (Warning: this is not the image of

the center of Ci in general! Conformal transformations don’t preserve the centers of circles.)
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We want to show that the range of F (v1(x), . . . ,vn(x)) (as a function of x) contains the

origin. Suppose not. For 0 < t < 1 and x ∈ tB, define

ft(x) = tF (v1(x), . . . ,vn(x))
0.

Then ft is a continuous map tB → tB, and so by Brouwer’s Fixed Point Theorem, it has a

fixed point pt, satisfying

pt = tF (v1(pt), . . . ,vn(pt))
0.

Clearly |pt| = t. We may select a sequence of numbers tk ∈ (0, 1) such that tk → 1, ptk →
q ∈ B and vi(pt) → wi ∈ B for every i. Clearly |q| = 1 and |wi| = 1. By the continuity of

F , we have F (v1(pt), . . . ,vn(pt) → F (w1, . . . ,wn), and hence q = F (w1, . . . ,wn)
0. From

the properties of τx it follows that if Ci does not contain q, then wi = −q. Since at most

two of the discs Ci contain q, at most two of {w1, . . . ,wn} are different from −q, and hence

(−q)TF (w1, . . . ,wn)
0 = −qTq ≥ 0 by our assumption about F . This is a contradiction. �

3.3 Applications of coin representations

3.3.1 Planar separators

Koebe’s Theorem has several important applications. We start with a simple proof by Miller

and Thurston [7] of the Planar Separator Theorem 3.3.1 of Lipton and Tarjan [6] (we present

the proof with a weaker bound of 3n/4 on the sizes of the components instead of 2n/3; see

[12] for an improved analysis of the method).

Theorem 3.3.1 (Planar Separator Theorem) Every planar graph G = (V,E) on n

nodes contains a set S ⊆ V such that |S| ≤ 4
√
n, and every connected component of G\S

has at most 2n/3 nodes.

We need the notion of the “statistical center”, which is important in many other studies

in geometry. Before defining it, we prove a simple lemma.

Lemma 3.3.2 For every set S ⊆ R
d of n points there is a point c ∈ R

n such that every

closed halfspace containing c contains at least n/(d+1) elements of S.

Proof. Let H be the family of all closed halfspaces that contain more than dn/(d+1) points

of S. The intersection of any (d+1) of these still contains an element of S, so in particular

it is nonempty. Thus by Helly’s Theorem, the intersection of all of them is nonempty. We

claim that any c ∈ ∩H satisfies the conclusion of the Lemma.

If H be any open halfspace containing c, then R
d \H /∈ H, which means that H contains

at least n/(d+1) points of S. If H is a closed halfspace containing c, then it is contained in
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an open halfspace H ′ that intersects S in exactly the same set, and applying the previous

argument to H ′ we are done. �

A point c as in Lemma 3.3.2 is sometimes called a “statistical center” of the set S. To make

this point well-defined, we call the center of gravity of all points c satisfying the conclusion

of Lemma 3.3.2 the statistical center of the set (note: points c satisfying the conclusion of

Lemma form a convex set, whose center of gravity is well defined).

Proof of Theorem 3.3.1. Let (Ci : i ∈ V ) be a Koebe representation of G on the unit

sphere, and let ui be the center of Ci on the sphere, and ρi, the spherical radius of Ci. By

Lemma 3.2.4, we may assume that the statistical center of the points ui is the origin.

Take any plane H through 0. Let S denote the set of nodes i for which Ci intersects H ,

and let S1 and S2 denote the sets of nodes for which Ci lies on one side and the other of H .

Clearly there is no edge between S1 and S2, and so the subgraphs G1 and G2 are disjoint and

their union is G\S. Since 0 is a statistical center of the ui, it follows that |S1|, |S2| ≤ 3n/4.

It remains to make sure that S is small. To this end, we choose H at random, and

estimate the expected size of S.

What is the probability that H intersects Ci? If ρi ≥ π/2, then this probability is 1, but

there is at most one such node, so we can safely ignore it, and suppose that ρi < π/2 for

every i. By symmetry, instead of fixing Ci and choosing H at random, we can fix H and

choose the center of Ci at random. Think of H as the plane of the equator. Then Ci will

intersect H if and only if it is center is at a latitude at most ρi (North or South). The area

of this belt around the equator is, by elementary geometry, 4π sin ρi, and so the probability

that the center of Ci falls into here is 2 sin ρi. It follows that the expected number of caps

Ci intersected by H is
∑

i∈V 2 sin ρi.

To get an upper bound on this quantity, we use the surface area of the cap Ci is 2π(1−
cos ρi) = 4π sin2(ρi/2), and since these are disjoint, we have

∑

i∈V

(
sin

ρi
2

)2
< 1. (3.16)

Using that sin ρi ≤ 2 sin ρi

2 , we get by Cauchy-Schwartz

∑

i∈V

2 sin ρi ≤ 2
√
n

(∑

i∈V

(sin ρi)
2

)1/2

≤ 4
√
n

(∑

i∈V

(
sin

ρi
2

)2
)1/2

< 4
√
n.

So the expected size of S is less than 4
√
n, and so there is at least one choice of H for which

|S| < 4
√
n. �

3.3.2 Laplacians of planar graphs

The Planar Separator theorem was first proved by direct graph-theoretic arguments; but for

the following theorem on the eigenvalue gap of the Laplacian of planar graphs by Spielman
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and Teng [11] there is no proof known avoiding Koebe’s theorem.

Theorem 3.3.3 For every connected planar graph G = (V,E) on n nodes and maximum

degree D, the second smallest eigenvalue of LG is at most 8D/n.

Proof. Let Ci : i ∈ V be a Koebe representation of G on the unit sphere, and let ui be the

center of Ci, and ρi, the spherical radius of Ci. By Lemma 3.2.4 may assume that
∑

i ui = 0.

The second smallest eigenvalue of LG is given by

λ2 = min
x 6=0∑
i xi=0

∑
ij∈E(xi−xj)

2

∑
i∈V x2

i

,

Let ui = (ui1, ui2, ui3), then this implies that

∑

ij∈E

(uik−ujk)
2 ≥ λ2

∑

i∈V

u2
ik

holds for every coordinate k, and summing over k, we get

∑

ij∈E

‖ui−uj‖2 ≥ λ2

∑

i∈V

‖ui‖2 = λ2n. (3.17)

On the other hand, we have

‖ui−uj‖2 = 4

(
sin

ρi+ρj
2

)2

= 4
(
sin

ρi
2
cos

ρj
2
+sin

ρj
2
cos

ρi
2

)2

≤ 4
(
sin

ρi
2
+sin

ρj
2

)2
≤ 8

(
sin

ρi
2

)2
+8
(
sin

ρj
2

)2
,

and so by (3.16)

∑

ij∈E

‖ui−uj‖2 ≤ 8D
∑

i∈V

(
sin

ρi
2

)2
≤ 8D.

Comparison with (3.17) proves the theorem. �

This theorem says that planar graphs are very bad expanders. The result does not

translate directly to eigenvalues of the adjacency matrix or the transition matrix of the

random walk on G, but for graphs with bounded degree it does imply the following:

Corollary 3.3.4 Let G be a connected planar graph on n nodes with maximum degree D.

Then the second largest eigenvalue of the transition matrix is at least 1−8D/n, and the

mixing time of the random walk on G is at least Ω(n/D).
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3.4 Circle packing and the Riemann Mapping Theorem

Koebe’s Circle Packing Theorem and the Riemann Mapping Theorem in complex analysis

are closely related. More exactly, we consider the following generalization of the Riemann

Mapping Theorem.

Theorem 3.4.1 (The Koebe-Poincaré Uniformization Theorem) Every open do-

main in the sphere whose complement has a finite number of connected components is

conformally equivalent to a domain obtained from the sphere by removing a finite number of

disjoint disks and points.

The Circle Packing Theorem and the Uniformization Theorem are mutually limiting cases

of each other (Koebe [5], Rodin and Sullivan [8]). The exact proof of this fact has substantial

technical difficulties, but it is not hard to describe the idea.

1. To see that the Uniformization Theorem implies the Circle Packing Theorem, let G

be a planar map and G∗ its dual. We may assume that G and G∗ are 3-connected, and that

G∗ has straight edges (these assumptions are not essential, just convenient). Let ε > 0, and

let U denote the ε-neighborhood of G∗. By Theorem 3.4.1, there is a conformal map of U

onto a domain D′ ⊆ S2 which is obtained by removing a finite number of disjoint caps and

points from the sphere (the removed points can considered as degenerate caps). If ε is small

enough, then these caps are in one-to-one correspondence with the nodes of G. We normalize

using Lemma 3.2.4 and assume that the center of gravity of the cap centers is 0.

Letting ε → 0, we may assume that the cap representing any given node v ∈ V (G)

converges to a cap Cv. One can argue that these caps are non-degenerate, caps representing

different nodes tend to openly disjoint caps, and caps representing adjacent nodes tend to

caps that are touching.

2. In the other direction, let U = S2 \K1 \· · ·\Kn, where K1, . . . ,Kn are disjoint closed

connected sets which don’t separate the sphere. Let ε > 0. It is not hard to construct a

family C(ε) of openly disjoint caps such that the radius of each cap is less than ε and their

tangency graph G is a triangulation of the sphere.

Let Hi denote the subgraph of G consisting of those edges intersecting K ′
i. If ε is small

enough, then the subgraphs Hi are node-disjoint, and each Hi is nonempty except possibly

if Ki is a singleton. It is also easy to see that the subgraphs Hi are connected.

Let us contract each nonempty connected Hi to a single node wi. If Ki is a singleton set

and Hi is empty, we add a new node wi to G in the triangle containing K ′
i, and connect it

to the nodes of this triangle. The spherical map G′ obtained this way can be represented as

the tangency graph of a family of caps D = {Du : u ∈ V (G′)}. We can normalize so that

the center of gravity of the centers of Dw1
, . . . , Dwn is the origin.

Now let ε → 0. We may assume that each Dwi = Dwi(ε) tends to a cap Dwi(0). Further-

more, we have a map fε that assigns to each node u of Gε the center of the corresponding
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cap Du. One can prove (but this is nontrivial) that these maps fε, in the limit as ε → 0,

give a conformal map of U onto S2 \Dw1
(0)\· · ·\Dwn(0).

Exercise 3.4.2 Prove Lemma 3.1.7.

Exercise 3.4.3 Prove that every double circle representation of a planar graph
is a rubber band representation with appropriate rubber band strengths.

Exercise 3.4.4 Show by an example that the bound in Lemma 3.3.2 is sharp.
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