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Given a graph, we would like to embed it in a Euclidean space so that the distances

between nodes in the graph should be the same as, or at least close to, the geometric distance

of the representing vectors. Our goal is to illustrate how to embed graphs into euclidean

spaces (or other standard normed spaces), and, mainly, how to use such embeddings to prove

graph-theoretic theorems and to design algorithms.

It is not hard to see that every embedding will necessarily have some distortion in non-

trivial cases. For example, the “claw” K1,3 cannot be embedded isometrically in any dimen-

sion. We get more general and useful results if we study embeddings where the distances may

change, but in controlled manner. To emphasize the difference, we will distinguish distance

preserving (isometric) and distance respecting embeddings.

The complete k-graph can be embedded isometrically in a euclidean space with dimen-

sion k−1, but not in lower dimensions. There is often a trade-off between dimension and

distortion. This motivates our concern with the dimension of the space in which we represent

our graph.

Several of the results are best stated in the generality of finite metric spaces. Recall

that a metric space is a set V endowed with a distance function d : V ×V → R+ such

that d(u, v) = 0 if and only if u = v, d(v, u) = d(u, v), and d(u,w) ≤ d(u, v)+d(v, w) for

all u, v, w ∈ V . There is a large literature of embeddings of one metric space into another

so that distances are preserved (isometric embeddings) or at least not distorted too much

(we call such embeddings, informally, “distance respecting”). These results are often very

combinatorial, and have important applications to graph theory and combinatorial algorithms

(see [6, 14]).

Here we have to restrict our interest to embeddings of (finite) metric spaces into basic

normed spaces like euclidean or `1 spaces. We discuss some examples of isometric embeddings,

then we construct important distance respecting embeddings, and then we introduce the

fascinating notion of volume-respecting embeddings. We show applications to important

graph-theoretic algorithms. Several facts from high dimensional geometry are used, which

are collected in the last section.
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1 Isometric embeddings

1.1 Supremum norm

Theorem 1.1 (Frechet) Any finite metric space can be embedded isometrically into

(Rk, `∞) for some finite k.

The theorem is valid for infinite metric spaces as well (when infinite dimensional L∞

spaces must be allowed for the target space), with a slight modification of the proof. We

describe the simple proof for the finite case, since its idea will be used later on.

Proof. Let (V, d) be a finite metric space, and consider the embedding

uv = (d(v, i) : i ∈ V ) (v ∈ V ).

Then by the triangle inequality,

‖uu−uv‖∞ = max
i
|d(u, i)−d(v, i)| ≤ d(u, v).

On the other hand, the coordinate corresponding to i = v gives

‖uu−uv‖∞ ≥ |d(u, v)−d(v, v)| = d(u, v),

showing that the embedding is isometric. �

1.2 Manhattan distance

Another representation with special combinatorial significance is an representation in Rn with

the `1-distance (often called Manhattan distance). It is convenient to allow semimetrics, i.e.,

symmetric functions d : V ×V → R+ satisfying d(i, i) = 0 and d(i, k) ≤ d(i, j)+d(j, k) (the

triangle inequality), but for which d(u, v) = 0 is allowed even if u 6= v. An `1-representation

of a finite semimetric space (V, d) is a mapping u : V → Rm such that d(i, j) = ‖ui−uj‖1.

We say that (V, d) is `1-representable, or shortly an `1-semimetric.

For a fixed underlying set V , all `1-semimetrics form a closed convex cone: if i 7→ ui ∈ Rm

is an `1-representation of (V, d) and i 7→ u′i ∈ Rm′ is an `1-representation of (V, d′), then

i 7→
(
αu

α′u′

)
is an `1-representation of αd+α′d′ for α, α′ ≥ 0.

An `1-semimetric of special interest is the semimetric defined by a subset S ⊆ V ,

∇S(i, j) = 1(|{i, j}∩S| = 1),

which I call a 2-partition semimetric. (These are often call “cut-semimetrics”, but I don’t

want to use this term since “cut norm” and “cut distance” are used in this book in a different

sense.)
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Lemma 1.2 A finite semimetric space (V, d) is an `1-semimetric if and only if it can be

written as a nonnegative linear combination of 2-partition semimetrics.

Proof. Every 2-partition semimetric ∇S can be represented in the 1-dimensional space by

the map 1S . It follows that every nonnegative linear combination of 2-partition semimetrics

on the same underlying set is an `1-semimetric. Conversely, every `1-semimetric is a sum of

`1-semimetrics representable in R1 (just consider the coordinates of any `1-representation).

So it suffices to consider `1-semimetrics (V, d) for which there is a representation i 7→ ui ∈ R
such that d(i, j) = |ui−uj |. We may assume that V = [n] and u1 ≤ · · · ≤ un, then for i < j,

d(i, j) =
n−1∑
k=1

(uk+1−uk)∇{1,...,k}

expresses d as a nonnegative linear combination of 2-partition semimetrics. �

2 Distance respecting representations

As we have seen, the possibility of a geometric representation that reflects the graph distance

exactly is limited, and therefore we allow distortion. Let F : V1 → V2 be a mapping of the

metric space (V1, d1) into the metric space (V2, d2). We define the distortion of F as

max
u,v∈V1

d2(F (u), F (v))

d1(u, v)

/
min
u,v

d2(F (u), F (v))

d1(u, v)
.

Note that to have finite distortion, the map F must be injective. The distortion does not

change if all distances in one of the metric spaces are scaled by the same factor. So if we

are looking for embeddings in a Banach space, then we may consider embeddings that are

contractive, i.e., d2(F (u), F (v)) ≤ d1(u, v) for all u, v ∈ V1.

2.1 Dimension reduction

In many cases, we can control the dimension of the ambient space based on general principles,

and we start with a discussion of these. The dimension problem is often easy to handle, due

to a fundamental lemma [8].

Lemma 2.1 (Johnson–Lindenstrauss) For every 0 < ε < 1, every n-point set S ⊂ Rn

can be mapped into Rd with d < (80 lnn)/ε2) with distortion at most ε.

More careful computation gives a constant 8 instead of 80.

Proof. Orthogonal projection onto a random d-dimensional subspace L does the job. First,

let us see what happens to the distance of a fixed pair of points x,y ∈ S. Instead of projecting

the fixed segment of length |x−y| on a random subspace, we can project a random vector of
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the same length on a fixed subspace. Then Lemma 4.1 implies that with probability at least

1−4e−ε
2d/4, the projections x′ and y′ of every fixed pair of points x and x′ satisfy

1

1+ε

√
d

n
≤ |x

′−y′|
|x−y|

≤ (1+ε)

√
d

n
.

It follows that with probability at least 1−
(
n
2

)
4e−ε

2d/4, this inequality holds simultaneously

for all pairs x, y ∈ S, and then the distortion of the projection is at most (1+ε)2 < 1+3ε.

Replacing ε by ε/3 and choosing d as in the Theorem, this probability is positive, and the

lemma follows. �

2.2 Embedding with small distortion

We describe embedding of a general metric space into a euclidean space, due to Bourgain

[1], which has low distortion (and other very interesting and useful properties, as we will see

later).

Theorem 2.2 Every metric space with n points can be embedded into the euclidean space

Rd with distortion O(log n) and dimension d = O(log n).

To motivate the construction, let us recall Frechet’s Theorem 1.1: we embed a general

metric space isometrically into `∞ by assigning a coordinate to each point w, and considering

the representation

x : i 7→ (d(w, i) : w ∈ V ).

If we want to represent the metric space by euclidean metric with a reasonably small dis-

tortion, this construction will not work, since it may happen that all points except u and v

are at the same distance from u and v, and once we take a sum instead of the maximum,

the contribution from u and v will become negligible. The remedy will be to take distances

from sets rather than from points; it turns out that we need sets with sizes of all orders of

magnitude, and this is where the logarithmic factor is lost.

We start with describing a simpler version, which is only good “on the average”. For a

while, it will be more convenient to work with `1 distances instead of euclidean distances.

Both of these deviations from our goal will be easy to fix.

Let (V, d) be a metric space on n elements. Let m = dlog ne, and for every 1 ≤ i ≤ m,

choose a random subset Ai ⊆ V , putting every element v ∈ V into Ai with probability 2−i.

Let d(v,Ai) denote the distance of node v from the set Ai (if Ai = ∅, we set d(v,Ai) = K

for some very large K, the same for every v). Consider the mapping x : V → RN defined

by

xu =
(
d(u,A1), . . . , d(u,Am)

)
. (1)
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We call this the random subset representation of (V, d). Note that this embedding depends

on the random choice of the sets Ai, and so we have to make probabilistic statements about

it.

Lemma 2.3 The random subset representation (1) satisfies

‖xu−xv‖1 ≤ md(u, v), and E(‖xu−xv‖1) ≥ 1

16
d(u, v).

for every pair of points u, v ∈ V .

Proof. By the triangle inequality

|d(u,Ai)−d(v,Ai)| ≤ d(u, v), (2)

and hence

‖xu−xv‖1 =

m∑
i=1

|d(u,Ai)−d(v,Ai)| ≤ md(u, v).

To prove the lower bound, fix two points u and v. Let (u0 = u, u1, . . . , un−1) be the points

in V ordered by increasing distance from u (so that u0 = u), and let (v0 = v, v1, . . . , vn−1) be

defined analogously. We break ties arbitrarily. Define ρi = max(d(u, u2i), d(v, v2i)) as long

as ρi < d(u, v)/2. Let k be the first i with max(d(u, u2k), d(v, v2k)) ≥ d(u, v)/2, and define

ρk = d(u, v)/2.

Focus on any i < k, and let (say) ρi = d(u, u2i). If Ai does not select any point from

(u0, u1, . . . , u2i−1), but selects a point from (v0, v1, . . . , v2i−1), then

|d(u, Si)−d(v, Si)| ≥ d(u, u2i)−d(v, , v2i−1) ≥ ρi−ρi−1.

The sets (u0, u1, . . . , u2i−1) and (v0, v1, . . . , v2i−1) are disjoint, and so the probability that

this happens is(
1−
(

1− 1

2i

)2i−1)(
1− 1

2i

)2i
≥ 1

8
.

So the contribution of Ai to E
(
|d(u,Ai)−d(v,Ai)|) is at least (ρi−ρi−1)/8. It is easy to

check that this holds for i = k as well. Hence

E(‖xu−xv‖1) =

m∑
i=1

E|d(u,Ai)−d(v,Ai)| ≥
1

8

k∑
i=0

(ρi−ρi−1) =
1

8
ρk =

1

16
d(u, v), (3)

which proves the Lemma. �

Proof of Theorem 2.2. The previous lemma only says that the random subset representa-

tion does not shrink distances too much “on the average”. Equation 3 suggests the remedy:
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the distance ‖xu−xv‖1 is the sum of m independent bounded random variables, and hence

it will be close to its expectation with high probability, if m is large enough. Unfortunately,

our m as chosen is not large enough to be able to claim this simultaneously for all u and v;

but we can multiply m basically for free. To be more precise, let us generate N independent

copies x1, . . . ,xN of the representation (1), and consider the mapping y : V → RNm, defined

by

yu = (x1
u, . . . ,x

N
u ). (4)

Then trivially

‖yu−yv‖1 ≤ Nmd(u, v) and E(‖yu−yv‖1) = NE(‖xu−xv‖1) ≥ N 1

16
d(u, v).

For every u and v, (1/N)‖yu−yv‖1 → E(‖xu−xv‖1 ≥ 1
16d(u, v) by the Law of Large Num-

bers with probability 1, and hence if N is large enough, then with high probability

‖yu−yv‖1 ≥
N

20
d(u, v) (5)

holds for all pairs u, v. So y is a representation in `1 with distortion at most 20m.

To get results for `p-distance instead of the `1-distance (in particular, for the the euclidean

distance), we first note that the upper bound

‖yu−yv‖p ≤
∥∥(d(u, v), . . . , d(u, v))

∥∥
p

= (Nm)1/pd(u, v)

follows similarly from the triangle inequality as the analogous bound for the `1-distance. The

lower bound is similarly easy, using (5):

‖yu−yv‖p ≥ (Nm)
1
p−1‖yu−yv‖1 ≥

(Nm)1/p

20m
d(u, v) (6)

with high probability for all u, v ∈ V . The ratio of the upper and lower bounds is 20m =

O(log n).

We are not yet done, since choosing a large N will result in a representation in a very high

dimension. An easy way out is to invoke the Johnson–Lindenstrauss Lemma 2.1 (in other

words, to apply a random projection). Alternately, we could estimate the concentration of

(1/N)‖yu−yv‖1 using the Chernoff-Hoeffding Inequality. �

Linial, London and Rabinovitch [10] showed how to construct an embedding satisfying

the conditions in Theorem 2.2 algorithmically, and gave the application to be described in

Section 2.3. Matoušek [13] showed that if the metric space is the graph distance in an

expander graph, then Bourgain’s embedding is essentially optimal, in the sense that every

embedding in a euclidean space has distortion Ω(log n).
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2.3 Multicommodity flows and approximate Max-Flow-Min-Cut

We continue with an important algorithmic application of the random subset representation.

A fundamental result in the theory of multicommodity flows is the theorem of Leighton

and Rao [9]. Stated in a larger generality, as proved by Linial, London and Rabinovich [10],

it says the following. Suppose that we have a multicommodity flow problem on a graph G.

This means that we are given k pairs of nodes (si, ti) (i = 1, . . . , k), and for each such pair,

we are given a demand di ≥ 0. Every edge e of the graph has a capacity ce ≥ 0. We would

like to design a flow f i from si to ti of value di for every 1 ≤ i ≤ k, so that for every edge

the capacity constraint is satisfied.

We state the problem more precisely. We need a reference orientation of G; let
−→
E denote

the set of these oriented edges, and for each set S ⊆ V , let ∇+(S) and ∇−(S) denote the

set of edges leaving and entering S, respectively. An (s, t)-flow is a function f :
−→
E (G)→ R

that conserves material:∑
e∈∇+(v)

f(e) =
∑

e∈∇−(v)

f(e) for all v ∈ V (G)\{s, t}. (7)

Since the orientation of the edges serves only as a reference, we allow positive or negative

flow values; if an edge is reversed, the flow value changes sign. The number

val(f) =
∑

e∈∇+(s)

f(e)−
∑

e∈∇−(s)

f(e) =
∑

e∈∇−(t)

f(e)−
∑

e∈∇+(t)

f(e) (8)

is the value of the flow.

So we want an (si, ti)-flow f i for every 1 ≤ i ≤ k, with prescribed values di, so that the

total flow through the edge does not exceed the capacity of the edge:

k∑
i=1

|f i(e)| ≤ ce for all e ∈
−→
E (G) (9)

(this clearly does not depend on which orientation of the edge we consider).

Let us hasten to point out that the solvability of a multicommodity flow problem is just

the feasibility of a linear program (we treat the values f(e) (e ∈
−→
E (G)) as variables). So

the multicommodity flow problem is polynomial time solvable. We can also apply the Farkas

Lemma, and derive a necessary and sufficient condition for solvability. If you work out the

dual, very likely you will get a condition that is not transparent at all; however, a very nice

form was discovered by Iri [7] and by Shahrokhi and Matula [15], which fits particularly well

into the topic of this book.

Consider a semimetric D on V (G)G. Let us describe an informal (physical) derivation

of the conditions. Think of an edge e = uv as a pipe with cross section ce and length

D(e) = D(u, v). Then the total volume of the system is
∑
e cdD(e). If the multicommodity
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problem is feasible, then every flow f i occupies a volume of val(f i)D(si, ti), and hence∑
i

diD(si, ti) ≤
∑
e

cdD(e). (10)

These conditions are also sufficient:

Theorem 2.4 Let G = (V,E) be a graph, let si, ti ∈ V , di ∈ R+ (i = 1, . . . , k), and

ce ∈ R+ (e ∈ E). Then there exist (si, ti)-flows (f i : i = 1, . . . , k) satisfying the the demand

conditions val(f i) = di and the capacity constraints (9) if and only if (10) holds for every

semimetric D in V .

We leave the exact derivation of the necessity of the condition, as well as the proof of the

converse, to the reader.

For the case k = 1, the Max-Flow-Min-Cut Theorem of Ford and Fulkerson gives a simpler

condition for the existence of a flow with given value, in terms of cuts. Obvious cut-conditions

provide a system of necessary conditions for the problem to be feasible in the general case as

well. If the multicommodity flows exist, then for every S ⊆ V (G), we must have∑
e∈∇+(S)

ce ≥
∑

i: S∩{si,ti}=1

di. (11)

In the case of one or two commodities (k ≤ 2), these conditions are necessary and sufficient;

this is the content of the Max-Flow-Min-Cut Theorem (k = 1) and the Gomory–Hu Theorem

(k = 2). However, for k ≥ 3, the cut conditions are not sufficient any more for the existence

of multicommodity flows. The theorem of Leighton and Rao asserts that if the cut-conditions

are satisfied, then relaxing the capacities by a factor of O(log n), the problem becomes feasible.

The relaxation factor was improved by Linial, London and Rabinovich to O(log k); we state

the result in this tighter form, but for simplicity of presentation prove the original (weaker)

form.

Theorem 2.5 Suppose that for a multicommodity flow problem, the cut conditions (11) are

satisfied. Then replacing every edge capacity ce by 10ce log k, the problem becomes feasible.

Proof. Using Theorem 2.4, it suffices to prove that for every semimetric D on V (G),∑
i

diD(si, ti) ≤ 10(log n)
∑
e

cdD(e). (12)

The cut conditions imply the validity of semimetric conditions (10) for 2-partition semi-

metrics, which in turn imply their validity for semimetrics that are nonnegative linear com-

binations of 2-partition semimetrics. We have seen that these are exactly the `1-semimetrics.

By Bourgain’s Theorem 2.2, there is an `1-metric D′ such that

D′(u, v) ≤ D(u, v) ≤ 20(log n)D′(u, v).
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We know that D′ satisfies the semimetric condition (10), and hence D satisfies the relaxed

semimetric conditions (12). �

3 Bandwidth and respecting the volume

A very interesting extension of the notion of small distortion was formulated by Feige [4].

We want an embedding of a metric space in a euclidean space such that is contractive, and

at the same time volume respecting up to size s, which means that every set of at most s

nodes spans a simplex whose volume is almost as large as possible.

Obviously, the last condition needs an explanation, and for this, we will have to define a

certain “volume” of a metric space.

3.1 Tree-volume

Let (V, d) be a finite metric space with |V | = n. For a spanning tree T on V (T ) = V , we

define Π(T ) =
∏
uv∈E(T ) d(u, v), and we define the tree-volume of (V, d) by

tvol(V ) = tvol(V, d) =
1

k!
min
T

Π(T )

Since we only consider one metric, denoted by d, in this section, we will not indicate it in

tvol(V, d) and similar quantities to be defined below. We will, however, change the underlying

set, so we keep V in the notation. Note that the tree T that gives here the minimum is also

minimizing the total length of edges (this follows from the fact that it can be found by the

Greedy Algorithm).

The following lemma relates the volume of a simplex in a vector labeling x : V → Rn

with the tree-volume. For any subset S ⊆ V , let volx(S) denote the (|S|−1)-dimensional

volume of conv(x(S)).

Lemma 3.1 For every contractive map x : V → Rn of a metric space (V, d), volx(V ) ≤
tvol(V ).

Proof. We prove by induction on n = |V | that for any tree T on V ,

volx(V ) ≤ 1

(n−1)!
Π(T ).

For n = 2 this is obvious. Let n > 2, and let i ∈ V be a node of degree 1 in T , let j be the

neighbor of i in T , and let h be the distance of i from the hyperplane containing x(V \{i}).
Then by induction,

volx(V ) =
h

n−1
volx(V \{i}) ≤ d(i, j)

n−1
volx(V \{i})

≤ d(i, j)

n−1

1

(n−2)!
Π(T − i) =

1

(n−1)!
Π(T ).
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This completes the proof. �

The main result about tree-volume (Feige [4]) is that the upper bound given in Lemma

3.1 can be attained, up to a polylogarithmic factor, for all small subsets simultaneously. To

be more precise, let (V, d) be a finite metric space, let k ≥ 2, and let x : V → Rn be any

contractive vector labeling. We define the volume-distortion for k-sets of x to be

sup
S⊆V
|S|=k

( tvol(S)

volx(S)

) 1
k−1

.

(The exponent 1/(k−1) is a natural normalization, since tvol(S) is the product of k−1

distances.) Volume-distortion for 2-sets is just the distortion defined before.

Theorem 3.2 Every finite metric space (V, d) with n elements has a contractive map

x : V → Rd with d = O((log n)5), with volume-distortion for k-sets O(
√
k log n) for ev-

ery k ≤ log n.

The proof is long and difficult, and the interested reader is referred to the paper of Feige

[4].

3.2 Bandwidth and density

Our goal is to use volume-respecting embeddings to design an approximation algorithm for

the bandwidth of a graph, but first we we have to discuss some basic properties of bandwidth.

The bandwidth bw(G) of a graph G = (V,E) is defined as the smallest integer b such that

the nodes of G can be labeled by 1, . . . , n so that |i−j| ≤ b for every edge ij. The number

refers to the fact that for this labeling of the nodes, all 1’s in the adjacency matrix will be

contained in a band of width 2b+1 around the main diagonal.

The bandwidth of a graph is NP-hard to compute, or even to approximate within a con-

stant factor [3]. As an application of volume-respecting embeddings, we describe an algorithm

that finds a polylogarithmic approximation of the bandwidth of a graph in polynomial time.

The ordering of the nodes which approximates the bandwidth will obtained through a random

projection of the representation to the line, in a fashion similar to the Goemans–Williamson

algorithm.

We can generalize the notion of bandwidth to any finite matric space (V, d): it is the

smallest real number b such that there is a bijection f : V → [n] such that |f(i)−f(j)| ≤
bd(i, j) for all i, j ∈ V . It takes a minute to realize that this notion does generalize graph

bandwidth: the definition of bandwidth requires this condition only for the case when ij is

an edge, but this already implies that it holds for every pair of nodes due to the definition

of graph distance. (We do loose the motivation for the word “bandwidth”.)

We need some preliminary observations about the bandwidth. It is clear that if there is

a node of degree D, then bw(G) ≥ D/2. More generally, if there are k nodes on the graph at
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distance at most t from a node v (not counting v), then bw(G) ≥ k/(2t). This observation

generalizes to metric spaces. We define the local density of a metric space (V, d) by

dloc(V ) = max
v,t

|B(v, t)|−1

t
.

Then

bw(V ) ≥ 1

2
dloc(V ). (13)

It is not hard to see that equality does not hold here (see Exercise 4.8), and the ratio

bw(G)/dloc(G) can be as large as log n for appropriate graphs.

We need the following related quantity, which we call the harmonic density:

dharm(V ) = max
v∈V

∑
u∈V \{v}

1

d(u, v)
. (14)

This quantity differs from the local density by at most a logarithmic factor:

Lemma 3.3 We have

dloc(V ) ≤ dharm(V ) ≤ (1+lnn)dloc(V ).

Proof. For an appropriate t > 0 and v ∈ V ,

dloc(V ) =
|B(v, t)|−1

t
≤

∑
u∈B(v,t)\{v}

1

d(u, v)
≤

∑
u∈V \{v}

1

d(u, v)
= dharm(V ).

On the other hand, dharm(V ) is the sum of n−1 positive numbers, among which the k-th

largest is at most dloc(V )/k by the definition of the local density. Hence

dharm(V ) ≤
n−1∑
k=1

dloc(V )

k
≤ (1+lnn)dloc(V ).

�

The harmonic density is related to the tree-volume:

Lemma 3.4∑
S∈(V

k)

1

tvol(S)
≤ n(k−1)!(4dharm(V ))k−1.

Proof. Let H be the complete graph on V with edgeweights βij = 1/d(i, j), then∑
S∈(V

k)

1

tvol(S)
≤
∑
S∈(V

k)

∑
T tree

V (T )=S

(k−1)!

Π(T )
≤
∑
T

(k−1)! hom(T,H), (15)
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where the summation runs over isomorphism types of trees on k nodes. To estimate homo-

morphism numbers, we use the fact that for every edge-weighting β of the complete graph

Kn in which the edgeweights βij ≥ 0 satisfy
∑
j βij ≤ D for every node i, we have

hom(T,H) ≤ nDk−1. (16)

For integral edgeweights, we can view the left side as counting homomorphisms into a multi-

graph, and then the inequality follows by simple computation: fixing any node of T as its

root, it can be mapped in n ways, and then fixing any search order of the nodes, each of

the other nodes can be mapped in at most D ways. This implies the bound for rational

edgeweights by scaling, and for real edgeweights, by approximating them by rationals.

By (16), each term on the right side of (15) is at most n(k−1)!dharm(V )k−1, and it is

well known that the number of isomorphism types of trees on k nodes is bounded by 4k−1

(see e.g. [11], Problem 4.18), which proves the Lemma. �

3.3 Approximating the bandwidth

Now we come to the main theorem describing the algorithm to get an approximation of the

bandwidth.

Theorem 3.5 Let G = (V,E) be a graph on n nodes, let k = dlnne, and let x : V → Rd be

a contractive representation such that for each set S with |S| = k, the volume of the simplex

spanned by x(S) is at least tvol(S)/ηk−1 for some η ≥ 1. Project the representing points onto

a random line L through the origin, and label the nodes by 1, . . . , n according to the order of

their projections on the line. Then with high probability, we have |i−j| ≤ 200kηdharm(G) for

every edge ij.

Proof. Let yi be the projection of xi in L. Let ij be an edge; since x is contractive we

have |xi−xj | ≤ 1, and hence, with high probability, |yi−yj | ≤ 2|xi−xj |/
√
d ≤ 2/

√
d for all

edges ij, and we will assume below that this is indeed the case.

We call a set S ⊆ V bad, if diam(y(S)) ≤ 2/
√
d. So every edge is bad, but we are

interested in bad k-sets. Let T = {i, i+1, . . . , j} and |T | = B. Then all the points yu, u ∈ T ,

are between yi and yj , and hence diam(y(T )) ≤ 2/
√
d, so T is bad.

By Lemma 4.2 (with d in place of n and k−1 in place of d),

P(S is bad) ≤
( 2e√

d

√
d

k−1

)k−1 πk−1
volx(S)

(
1+ln diam(x(S))

)
≤
( 2e√

k−1

)k−1 πk−1
volx(S)

(1+ln n) ≤
( 2e√

k−1

)k−1 πk−1
volx(S)

n.

Using the condition that x is volume-respecting, we get

P(S is bad) ≤
( 2eη√

k−1

)k−1 πk−1n
tvol(S)

.
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Using Corollary 3.4, the expected number of bad sets is( 2eη√
k−1

)k−1 ∑
S∈(V

k)

πk−1n

tvol(S)
≤
( 2eη√

k−1

)k−1
πk−1(k−1)!n2(4dharm(V ))k−1.

On the other hand, we have seen that the number of bad sets is at least
(
B+1
k

)
, so(

B+1

k

)
≤
( 8eη√

k−1

)k−1
πk−1(k−1)!n2dharm(V )k−1.

Using the trivial bound
(
B+1
k

)
≥ (B−k)k−1/(k−1)!, we get

B ≤ k+(k−1)!2/(k−1)
8eη√
k−1

π
1/(k−1)
k−1 n2/(k−1)dharm(V )

≤ 200kηdharm(V ).

This completes the proof. �

Corollary 3.6 For every finite metric space (V, d) with n points, its bandwidth and local

density satisfy

1

2
dloc(V ) ≤ bw(V ) ≤ O((log n)4)dloc(V ).

4 Geometric lemmas

The proofs above, as well as many other proofs on the boundary of combinatorics and ge-

ometry, depend on elementary inequalities involving volumes of spheres, caps, and their

projections, which are sometimes surprisingly nontrivial. In this section we collected some

of these facts.

Let x′ denote the projection of a vector x ∈ Rn onto the first d coordinates. It is easy to

see that if x is chosen uniformly at random from the unit sphere Sn−1, then

E(|x′|2) =
d

n
, (17)

The length of x′ is highly concentrated around
√
d/n, shown by the following estimates.

Lemma 4.1 If 1 ≤ d ≤ n, ε > 0, and x ∈ Sn−1 is chosen uniformly at random, then

1

1+ε

√
d

n
≤ |x′| ≤ (1+ε)

√
d

n

with probability at least 1−4e−ε
2d/4.

13



Proof. We can generate a random unit vector by generating n independent standard

Gaussian variables X1, . . . , Xn, and normalizing:

x =
1√

X2
1 + · · ·+X2

n

(X1, . . . , Xn).

Here X2
1 + · · ·+X2

n is from a chi-squared distribution with parameter n, and many estimates

are known for its distribution, of which we use (see e.g. Massart [12])

P(
∣∣X2

1 + · · ·+X2
n−n

∣∣ > εn) ≤ 2e−ε
2n/8. (18)

We have

|x′|2 =
X2

1 + · · ·+X2
d

X2
1 + · · ·+X2

n

.

Applying (18) to the numerator and denominator, we get the bounds in the Lemma. �

We also need the following “tail bound”, an estimate on the probability that x′ is very

short.

Lemma 4.2 If 1 ≤ d ≤ n−2, and x ∈ Sn−1 is chosen uniformly at random, then

P
(
|x| < ε

√
d

n

)
< (2ε)d

for every ε > 0.

Proof. Let x′′ denote the projection of a vector x onto the last n−d coordinates. Let A ={
x ∈ Sn−1 : |x′| ≤ c

}
and φ(x) = x′+x′′/|x′′|. Then φ maps A onto A′ = (cBd)×Sn−d−1

bijectively. We claim that

voln−1(A) ≤ voln−1(A′) = cdπdπn−d(n−d). (19)

Indeed, it is not hard to compute that the Jacobian of φ−1 (as a map A′ → A) is (1−
|x′|2)(n−d−2)/2, which is at most 1. �

We also need bounds on the length of 1-dimensional projections of convex sets.

Lemma 4.3 (a) Let K ⊂ Rn be a convex body, let v ∈ Sn−1 be chosen uniformly and

randomly, and let Iv be the orthogonal projection of K onto the line ev containing v. Then

P(λ(Iv) ≤ s) ≤ πns
n

2nvol(K)
.

(b) Let K ⊂ Rd be a convex body, let v ∈ Sn−1 be chosen uniformly and randomly, and

let Iv be the orthogonal projection of K onto the line ev containing v (we consider Rd as a

subspace of Rn). Then

P
(
λ(Iv) ≤ s

)
≤
(
es

√
n

d

)d πd
vold(K)

(
1+ln diam(K)

)
.
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For the proof of Lemma 4.3, we need a simple probabilistic inequality.

Lemma 4.4 Let X and Y be random variables, such that a ≤ X ≤ a′ and b ≤ Y ≤ b′

(where −∞ and ∞ are permitted values). Let s ≤ a′+b′, and define α = max(a, s−b′) and

β = min(a′, s−b)). Then

P(X+Y ≤ s) ≤
β+1∫
α

P(X ≤ t, Y ≤ s+1− t
)
dt. (20)

Proof. Starting with the right side,

β+1∫
α

P(X ≤ t, Y ≤ s+1− t
)
dt =

β+1∫
α

EX,Y 1(X ≤ t ≤ s+1−Y ) dt

= EX,Y

β+1∫
α

1(X ≤ t ≤ s+1−Y ) dt = EX,Y
(
min(s+1−Y, β+1)−max(X,α)

)
≥ EX,Y 1(X+Y ≤ s) = P(X+Y ≤ s)

(one needs to check that if X+Y ≤ s, then min(s+1−Y, β+1)−max(X,α) ≥ 1). �

Proof of Lemma 4.3. (a) It is easy to check that

λ(Iv) =
2

λ((K−K)∗∩ev)
, (21)

Hence by rather simple integration,

vol((K−K)∗) = πnE
(
λ(Iv)−n

)
. (22)

By the Blaschke–Santaló Inequality,

vol(K−K)vol((K−K)∗) ≤ π2
n, (23)

and by the Brunn-Minkowski Inequality

vol(K−K) ≥ 2nvol(K). (24)

Hence

E
(
λ(Iv)−n

)
=

vol((K−K)∗)

πn
≤ πn

vol(K−K)
≤ πn

2nvol(K)
. (25)

Markov’s Inequality implies part (a) of the lemma.

(b) Let v ∈ Sn−1 be chosen randomly from the uniform distribution. Let u be the

projection of v onto Rd. Then λ(Iv) = |u|λ(Iu). We apply Lemma 4.4 to the random
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variables X = ln |u| and Y = lnλ(Iu) (with probability 1, both |u| and λ(Iu) are positive).

For the bounds of integration we use the bounds |u| ≤ 1 and λ(Iu) ≤ diam(K). We get

P
(
λ(Iv) ≤ s

)
≤

es∫
s/diam(K)

1

t
P
(
|u| ≤ t, λ(Iu) ≤ es

t

)
dt. (26)

(The factor 1/t comes in because of the change of the variable.) Note that the length |u| and

the direction of u are independent as random variables, and hence so are |u| and λ(Iu). By

Lemma 4.2 and part (a),

P
(
|u| ≤ t

)
P
(
λ(Iu) ≤ es

t

)
≤
(

2t

√
n

d

)d πd
2dvold(K)

(es
t

)d
=
(
es

√
n

d

)d πd
vold(K)

.

Substituting this bound in (26), we get

P
(
λ(Iv) ≤ s

)
≤
(
es

√
n

d

)d πd
vold(K)

es∫
s/diam(K)

1

t
dt

=
(
es

√
n

d

)d πd
vold(K)

(
1+ln diam(K)

)
. (27)

�

Exercise 4.5 The graph K2,3 does not embed isometrically into `1.

Exercise 4.6 (a) Prove that every finite `2-space is isometric with an `1-space.
(b) Show by an example that the converse is not valid.

Exercise 4.7 Prove that every finite metric space (V, d) has a vector-labeling
with volume distortion at most 2 for V .

Exercise 4.8 Show that there exists a graph G on n nodes for which
bw(G)/dloc(G) ≥ logn.

References

[1] J. Bourgain: On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J.

Math. 52 (1985), 46–52.

[2] S.D.A. Dasgupta and A.K. Gupta: An Elementary Proof of a Theorem of Johnson and

Lindenstrauss, Random Structures and Algorithms 22 (2002), 60–65.

[3] C. Dubey, U. Feige, W. Unger: Hardness results for approximating the bandwidth,

Journal of Computer and System Sciences 77 (2010), 62–90.

[4] U. Feige: Approximating the bandwidth via volume respecting embeddings, Proc. 30th

Ann. ACM Symp. on Theory of Computing, ACM New York, NY (1998), 90-99.

16



[5] P. Frankl, H. Maehara: The Johnson-Lindenstrauss lemma and the sphericity of some

graphs, J. Combin. Theory Ser. B 44 (1988), 355–362.
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[14] J. Matoušek: Lectures on discrete geometry, Graduate Texts in Mathematics bf 212,

Springer–Verlag, New York (2002), Chapter 15.

[15] F. Shahroki and D.W. Matula: The maximum concurrent flow problem, J. ACM 37

(1990), 318–334.

17


	Isometric embeddings
	Supremum norm
	Manhattan distance

	Distance respecting representations
	Dimension reduction
	Embedding with small distortion
	Multicommodity flows and approximate Max-Flow-Min-Cut

	Bandwidth and respecting the volume
	Tree-volume
	Bandwidth and density
	Approximating the bandwidth

	Geometric lemmas

