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1 Definition

Let G = (V,E) be a simple graph. We will denote by G = (V,E) its complement.

An orthogonal representation of a graph G = (V,E) in R
d assigns to each i ∈ V a

vector ui ∈ R
d such that uT

i uj = 0 whenever ij ∈ E. An orthonormal representation is an

orthogonal representation in which all the representing vectors have unit length. Clearly we

can always scale the nonzero vectors in an orthogonal representation this way, and usually

this does not change any substantial feature of the problem.

Note that we did not insist that different nodes are represented by different vectors, nor

that adjacent nodes are mapped on non-orthogonal vectors. If these conditions also hold, we

call the orthogonal representation faithful.

Example 1.1 Every graph has a trivial orthonormal representation in R
V , in which node i

is represented by the standard basis vector ei. This representation is not faithful unless the

graph is has no edges.

Of course, we are interested in “nontrivial” orthogonal representations, which are more

“economical” than the trivial one.

Example 1.2 Figure 1 below shows that for the graph obtained by adding a diagonal to the

pentagon a simple orthogonal representation in 2 dimensions can be constructed.

This example can be generalized as follows.

Example 1.3 Let k = χ(G), and let {B1, . . . , Bk} be a family of disjoint complete subgraphs

covering all the nodes. Let {e1, . . . , ek} be the standard basis of Rk. Then mapping every

node of Bi to ei is an orthonormal representation.

A more “geometric” orthogonal representation is described by the following example.
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Figure 1: An (almost) trivial orthogonal representation

Example 1.4 Since χ(C5) = 3, the previous example gives a representation of C5 in 3-space

(Figure 2, left). To get a less trivial representation, consider an “umbrella” in R
3 with 5 ribs

of unit length (Figure 2). Open it up to the point when non-consecutive ribs are orthogonal.

This way we get 5 unit vectors u0,u1,u2,u3,u4, assigned to the nodes of C5 so that each

ui forms the same angle with the “handle” and any two non-adjacent nodes are labeled with

orthogonal vectors. These vectors give an orthogonal representation of C5 in 3-space.

Figure 2: Two orthogonal representations of C5.

2 Smallest cone and the theta function

When looking for “economic” orthogonal representations, we can define “economic” in several

ways. For example, we may want to find an orthogonal representation in a dimension as low

as possible (even though this particular way of phrasing the question does not seem to be the

most fruitful; we will return to more interesting versions of the minimum dimension problem

in the next section). We start with an application that provided the original motivation for

considering orthogonal representations.

2.1 Shannon capacity

We start with the problem from information theory that motivated the introduction of or-

thogonal representations [23] and several of the results to be discussed in this chapter.
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Consider a noisy channel through which we are sending messages over a finite alphabet

V . The noise may blur some letters so that certain pairs can be confused. We want to select

as many words of length k as possible so that no two can possibly be confused. As we shall

see, the number of words we can select grows as Θk for some Θ ≥ 1, which is called the

Shannon zero-error capacity of the channel.

In terms of graphs, we can model the problem as follows. We consider V as the set of

nodes of a graph, and connect two of them by an edge if they can be confused. This way we

obtain a graph G = (V,E), which we call the confusion graph of the alphabet. We denote by

α(G) the maximum number of independent points (the maximum size of a stable set) in the

graph G. If k = 1, then the maximum number of non-confusable messages is α(G).

To describe longer messages, we use the notion of strong product of two graphs (see

the Appendix). In terms of the confusion graph, α(G⊠k) is the maximum number of non-

confusable words of length k: words composed of elements of V , so that for every two words

there is at least one i (1 ≤ i ≤ k) such that the i-th letters are different and non-adjacent in

G, i.e., non-confusable. It is easy to see that

α(G⊠H) ≥ α(G)α(H). (1)

This implies that

α(G⊠(k+l)) ≥ α(G⊠k)α(G⊠l), (2)

and

α(G⊠k) ≥ α(G)k. (3)

The Shannon capacity of a graph G is the value

Θ(G) = lim
k→∞

α(G⊠k)1/k. (4)

Inequality (2) implies that the limit exists, and (3) implies that

Θ(G) ≥ α(G). (5)

Rather little is known about this graph parameter. For example, it is not known whether

Θ(G) can be computed for all graphs by any algorithm (polynomial or not), although there

are several special classes of graphs for which this is not hard. The behavior of Θ(G) and

the convergence in (4) are rather erratic; see Alon [2] and Alon and Lubetzky [4].

Example 2.1 Let C4 denote a 4-cycle with nodes (a, b, c, d). By (5), we have Θ(G) ≥ 2. On

the other hand, if we use a word, then all the 2k words obtained from it by replacing a and b

by each other, as well as c and d by each other, are excluded. Hence α(C⊠k
4 ) ≤ 4k/2k = 2k,

which implies that Θ(C4) = 2.
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The argument for bounding Θ from above in this last example can be generalized as

follows. Let χ(G) denote the minimum number of complete subgraphs covering the nodes of

G (this is the same as the chromatic number of the complementary graph.) Trivially

α(G) ≤ χ(G). (6)

Any covering of G by χ(G) cliques and of H by χ(H) cliques gives a “product covering” of

G⊠H by χ(G)χ(H) cliques, and so

χ(G⊠H) ≤ χ(G)χ(H) (7)

Hence

α(G⊠k) ≤ χ(G⊠k) ≤ χ(G)k,

and thus

Θ(G) ≤ χ(G). (8)

It follows that if α(G) = χ(G), then Θ(G) = α(G); for such graphs, nothing better can be

done than reducing the alphabet to the largest mutually non-confusable subset.

Example 2.2 The smallest graph for which Θ(G) cannot be computed by these means is

the pentagon C5. If we set V (C5) = {0, 1, 2, 3, 4} with E(C5) = {01, 12, 23, 34, 40}, then C⊠2
5

contains the stable set {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}. So α(C5)
⊠2k = α(C⊠2

5 )k ≥ 5k, and

hence Θ(C5) ≥
√
5.

We will show that equality holds here [23], but first we need some tools.

2.2 Definition and basic properties of the theta-function

Comparing Example 1.3 and the bound 6 suggests that using orthogonal representations of

G other than those obtained from clique coverings might give better bounds on the Shannon

capacity. To this end, we have to figure out what should replace the number of different

cliques in this more general setting. it turns out that the smallest half-angle φ of a rotational

cone (in arbitrary dimension) which contains all vectors in an orthogonal representation of

the graph does the job [23]. We will work with a transformed version of this quantity, namely

ϑ(G) =
1

(cosφ)2
= min

(ui),c
max
i∈V

1

(cTui)2
,

where the minimum is taken over all orthonormal representations (ui : i ∈ V ) of G and all

unit vectors c. (We call c the “handle” of the representation; for the origin of the name, see

Example 2.2. Of course, we could fix c, but this is not always convenient.)

From the trivial orthogonal representation (Example 1.1) we get that ϑ(G) ≤ |V |. Tighter
inequalities can be proved:
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Theorem 2.3 For every graph G,

α(G) ≤ ϑ(G) ≤ χ(G).

Proof. First, let S ⊆ V be a maximum independent set of nodes in G. Then in every

orthonormal representation (ui), the vectors {ui : i ∈ S} are mutually orthogonal unit

vectors. Hence

1 = cTc ≥
∑

i∈S

(cTui)
2 ≥ |S|min

i
(cTui)

2,

and so

max
i∈V

1

(cTui)2
≥ |S| = α(G).

This implies the first inequality.

The second inequality follows from Example 1.3, using c = 1√
k
(e1+ · · ·+ek) as the handle.

�

From Example 1.4 we get, using elementary trigonometry that

ϑ(C5) ≤
√
5. (9)

We’ll see that equality holds here.

Lemma 2.4 For any two graphs G and H, we have ϑ(G⊠H) ≤ ϑ(G)ϑ(H).

We will prove later (Corollary 2.10) that equality holds here.

Proof. The tensor product of two vectors u = (u1, . . . , un) ∈ R
n and v = (v1, . . . , vm) ∈ R

m

is the vector

u◦v = (u1v1, . . . , u1vm, u2v1, . . . , u2vm, . . . , unv1, . . . , unvm) ∈ R
nm.

The inner product of two tensor products can be expressed easily: if u,x ∈ R
n and v,y ∈ R

m,

then

(u◦v)T(x◦y) = (uTx)(vTy). (10)

Now let (ui : i ∈ V ) be an optimal orthogonal representation of G with handle c (ui, c ∈ R
n),

and let (vj : j ∈ V (H)) be an optimal orthogonal representation of H with handle d

(vj ,d ∈ R
m). It is easy to check, using (10), that the vectors ui ◦vj ((i, j) ∈ V (G)×V (H))

form an orthogonal representation of G⊠H . Furthermore, taking c◦d as its handle, we have

by (10) again that

(
(c◦d)T(ui ◦vj)

)2
= (cTui)

2(d◦vj)
2 ≥ 1

ϑ(G)
· 1

ϑ(H)
,
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and hence

ϑ(G⊠H) ≤ max
i,j

1
(
(c◦d)T(ui ◦vj)

)2 ≤ ϑ(G)ϑ(H).

�

This inequality has some important corollaries. We have

α(G⊠k) ≤ ϑ(G⊠k) ≤ ϑ(G)k,

which implies

Corollary 2.5 For every graph G, we have Θ(G) ≤ ϑ(G).

In particular, combining with (9) and Example 2.2, we get a solution of Shannon’s prob-

lem:

√
5 ≤ Θ(C5) ≤ ϑ(C5) ≤

√
5,

and equality must hold throughout.

We can generalize this argument. The product graph G⊠G has independent points in

the diagonal, implying that

ϑ(G⊠G) ≥ α(G⊠G) ≥ |V |.

Together with Lemma 2.4, this yields:

Corollary 2.6 For every graph G = (V,E), we have ϑ(G)ϑ(G) ≥ |V |.

Since C5
∼= C5, Corollary 2.6 implies that ϑ(C5) ≥

√
5, and together with (9), we get

another proof of the fact that ϑ(C5) =
√
5. Equality does not hold in general in Corollary

2.6, but it does when G has a node-transitive automorphism group. We postpone the proof

of this fact until some further formulas for ϑ will be developed (Corollary 2.12).

2.3 More expressions for ϑ

We prove a number of formulas for ϑ(G), which together have a lot of implications. The first

bunch of these will be proved together. We define a number of parameters, which will all

turn out to be equal to ϑ(G).

We start with a geometric definition, discovered independently by Karger, Motwani and

Sudan [18]. In terms of the complementary graph, this value is sometimes called the “vector

chromatic number”. Let

ϑ1 = min
{
t ≥ 2 : ∃wi ∈ R

d such that |wi| = 1, wT

i wj = − 1

t−1
(∀ij ∈ E)

}
. (11)
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Next, we give a couple of formulas for ϑ in terms of semidefinite optimization. Consider

the following two semidefinite programs:

minimize t maximize
∑

i,j∈V

Zij

subject to Y � 0 subject to Z � 0

Yij = −1 (∀ ij ∈ E) Zij = 0 (∀ ij ∈ E)

Yii = t−1 tr(Z) = 1 (12)

It is not hard to check that these are dual programs. The first program has a strictly feasible

solution (just choose t large enough), so by the Duality Theorem of semidefinite programming,

the two programs have the same objective value; we call this number ϑ2.

Finally, we use orthonormal representations of the complementary graph: define

ϑ3 = max
∑

i∈V

(dTvi)
2, (13)

where the maximum extends over all orthonormal representations (vi : i ∈ V ) of the com-

plementary graph G and all unit vectors d.

The main theorem of this section asserts that all these definitions lead to the same value.

Theorem 2.7 For every graph G, ϑ(G) = ϑ1 = ϑ2 = ϑ3.

Proof. We prove that

ϑ(G) ≤ ϑ1 ≤ ϑ2 ≤ ϑ3 ≤ ϑ(G). (14)

To prove the first inequality, let (wi : i ∈ V ) be the representation that achieves the

minimum in (11). Let c be a vector orthogonal to all the wi (we increase the dimension of

the space if necessary). Let

ui =
1√
ϑ1

(c+wi).

Then |ui| = 1 and uT

i uj = 0 for ij ∈ E, so (ui) is an orthonormal representation of G.

Furthermore, with handle c we have cTui = 1/
√
ϑ1, which implies that ϑ(G) ≤ ϑ1.

Second, let (Y, t) be an optimal solution of (12). Then ϑ2 = t, and the matrix 1/(t−1)Y

is positive semidefinite, and so it can be written as a Gram matrix, i.e., there are vectors

wi ∈ R
n such that

wT

i wj =
1√
t−1

Yij =




− −1

t−1
, if ij ∈ E,

1, if i = j.

(no condition if ij ∈ E). So these vectors satisfy the conditions in (11) for the given t. Since

ϑ1 is the smallest t for which this happens, this proves that ϑ1 ≤ t = ϑ2.
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To prove the third inequality in (14), let Z be an optimum solution of the dual program

in (12) with objective function value ϑ2. We can write Z is a Gram matrix: Zij = zTi zj

where zi ∈ R
k for some k ≥ 1. Let us rescale the vectors zi to get the unit vectors vi = z0i (if

zi = 0 then we take a unit vector orthogonal to everything else as vi). Define d = (
∑

i zi)
0.

By the properties of Z, the vectors vi form an orthonormal representation of G, and

hence

ϑ3 ≥
∑

i

(dTvi)
2.

To estimate the right side, we use the equation
∑

i

|zi|2 =
∑

i

zTi zi1 = tr(Z) = 1

and Cauchy Schwarz:
∑

i

(dTvi)
2 =

(∑

i

|zi|2
)(∑

i

(dTvi)
2
)
≥

(∑

i

|zi|dTvi

)2

=
(∑

i

dTzi

)2

=
(
dT

∑

i

zi

)2

=
∣∣∣
∑

i

zi

∣∣∣
2

=
∑

i,j

zTi zj = ϑ2.

This proves that ϑ3 ≥ ϑ2.

Finally, to prove the last inequality in (14), it suffices to prove that if (ui : i ∈ V ) is an

orthonormal representation of G in R
n with handle c, and (vi : i ∈ V ) is an orthonormal

representation of G in R
m with handle d, then

∑

i∈V

(dTvi)
2 ≤ max

i∈V

1

(cTui)2
. (15)

By a similar computation as in the proof of Lemma 2.4, we get that the vectors ui ◦vi (i ∈ V )

are mutually orthogonal unit vectors, and hence
∑

i

(cTui)
2(dTvj)

2 =
∑

i

(
(c◦d)T(ui ◦vi)

)2 ≤ 1. (16)

On the other hand,
∑

i

(cTui)
2(dTvj)

2 ≥ min
i
(cTui)

2
∑

i

(dTvj)
2,

which implies that
∑

i

(dTvj)
2 ≥ 1

min
i
(cTui)

2
= max

i

1

(cTui)2
.

This proves (15) and completes the proof of Theorem 2.7. �

These formulations have many versions, one of which are stated below without proof,

which is left to the reader as an exercise.

Proposition 2.8 ϑ(G) is the minimum of the largest eigenvalues of all symmetric matrices

M ∈ R
V ×V such that Mij = 1 whenever ij ∈ E or i = j.
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2.4 Consequences of the formulas

From the fact that equality holds in (14), it follows that equality holds in all the arguments

above. Let us formulate some consequences. Considering the optimal orthogonal representa-

tion constructed in the first step of the proof, we get:

Corollary 2.9 Every graph G has an orthonormal representation (ui) with handle c such

that for every node i,

cTui =
1√
ϑ(G)

.

As a further application of the duality established in Section 2.3, we prove that equality

holds in Lemma 2.4:

Proposition 2.10 For any two graphs G and H,

ϑ(G⊠H) = ϑ(G)ϑ(H).

Proof. Let (vi,d) be an orthonormal representation of G which is optimal in the sense

that
∑

i(d
Tvi)

2 = ϑ(G), and let (wj , e) be an orthonormal representation of H such that
∑

i(e
Twi)

2 = ϑ(H). It is easy to check that the vectors vi ◦wj form an orthonormal repre-

sentation of G⊠H , and so using handle d◦e we get

ϑ(G⊠H) ≥
∑

i,j

(
(d◦e)T(vi ◦wj)

)2
=

∑

i,j

(dTvi)
2(eTwj)

2 = ϑ(G)ϑ(H).

We already know the reverse inequality, which completes the proof. �

The matrix descriptions of ϑ imply an important property of optimal orthogonal repre-

sentations, namely automorphism invariance.

Proposition 2.11 Every graph G has an orthonormal representation (ui, c) in R
n with

cTui = 1/
√
ϑ(G) for all nodes i, and its complement has an orthonormal representation

(vi,d) in R
n with

∑
i(d

Tvi)
2 = ϑ(G), such that every automorphism of G can be lifted to

an orthogonal transformation of Rn that leaves both representations invariant.

Proof. We give the proof for the orthonormal representation of the complement. The set

of optimum solutions of the dual semidefinite program in (12) form a bounded convex set,

which is invariant under the transformations Z 7→ PZP , where P is the permutation matrix

defined by an automorphism of G. The center of gravity of this convex set is a matrix Z

which is fixed by these transformations, i.e., it satisfies PZP = Z for all automorphisms

P . The construction of an orthonormal representations of G in the proof of Theorem 2.7

can be done in a canonical way (e.g., choosing the rows of Z1/2 as the vectors zi), and so

the obtained optimal orthonormal representation will be invariant under the automorphism

group of G (acting as permutation matrices). �
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Corollary 2.12 If G has a node-transitive automorphism group, then

ϑ(G)ϑ(G) = |V |.

Proof. It follows from Proposition 2.11 that G has an orthonormal representation (vi,d)

in R
n such that

∑
i(d

Tvi)
2 = ϑ(G), and dTvi is independent of i. So (dTvi)

2 = ϑ(G)/|V |
for all nodes i, and hence

ϑ(G) ≤ max
i

1

(dTvi)2
=

|V |
ϑ(G)

.

Since we already know the reverse inequality (2.6), this proves the Corollary. �

Corollary 2.13 If G is a self-complementary graph with a node-transitive automorphism

group, then Θ(G) = ϑ(G) =
√
|V |.

Proof. The diagonal in G⊠G is independent, so α(G⊠G) = α(G⊠G) ≥ |V |, and hence

Θ(G) ≥
√
|V |. On the other hand, ϑ(G) ≤

√
|V | follows by Corollary 2.12. �

Example 2.14 (Paley graphs) The Paley graph Palp is for a prime p ≡ 1 (mod 4). We

take the {0, 1, . . . , p−1} as nodes, and connect two of them if their difference is a quadratic

residue. It is clear that these graphs have a node-transitive automorphism group, and it

is easy to see that they are self-complementary. So Corollary 2.13 applies, and gives that

Θ(Palp) = ϑ(Palp) =
√
p. To determine the stability number of Paley graphs is a difficult

unsolved number-theoretic problem, but it is conjectured that α(Palp) = O((log p)2). Sup-

posing this conjecture is true, we get an infinite family for which the Shannon capacity is

non-trivial (i.e., Θ > α), and can be determined exactly.

2.5 Random graphs

The Paley graphs are quite similar to random graphs, and indeed, for random graphs ϑ

behaves similarly as for the Paley graphs, namely it is of the order
√
n (Juhász [17]). (It is

not known, however, how large the Shannon capacity of a random graph is.) As usual, G(n, p)

denotes a random graph on n nodes with edge density p. Here we assume that p is a constant

and n → ∞. The analysis extends to the case when (lnn)1/6/n ≤ p ≤ 1−(lnn)1/6/n

(Coja-Oghlan and Taraz [8]). See Coja-Oghlan [7] for more results about the concentration

of this value.

Theorem 2.15 With high probability,
√
(1−p)n/3 < ϑ(G(n, p)) < 3

√
n/p.
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2.6 The TSTAB body

The basic technique of applying linear programming in discrete optimization is polyhedral

combinatorics. Instead of surveying this broad topic, we illustrate it by recalling some results

on the stable set polytope. A detailed account can be found e.g. in [14].

Let G = (V,E) be a graph; it is convenient to assume that it has no isolated nodes. The

Stable Set Problem is the problem of finding α(G). This problem is NP-hard.

The basic idea in applying linear programming to study the stable set problem is the

following. For every subset S ⊆ V , let 1S ∈ R
V denote its indicator vector. The stable set

polytope STAB(G) of G is the convex hull of incidence vectors of all stable sets.

There is a system of linear inequalities whose solution set is exactly the polytope

STAB(G), and if we can find this system, then we can find α(G) by optimizing the lin-

ear objective function
∑

i xi. Unfortunately, this system is in general exponentially large and

very complicated. But if we can find at least some linear inequalities valid for the stable set

polytope, then using these we get an upper bound on α(G), and for special graphs, we get

the exact value.

Let us survey some classes of known constraints.

Non-negativity constraints:

xi ≥ 0 (i ∈ V ). (17)

Edge constraints:

xi+xj ≤ 1 (ij ∈ E). (18)

These inequalities define a polytope FSTAB(G). The integral points in FSTAB(G) are

exactly the incidence vectors of stable sets, but FSTAB(G) may have other non-integral

vertices, and is in general larger than STAB(G) (see Figure 3).

Proposition 2.16 (a) STAB(G) = FSTAB(G) iff G is bipartite.

(b) The vertices of FSTAB(G) are half-integral.

Clique constraints: For every clique (complete subgraph) B, we write up an inequality

∑

i∈B

xi ≤ 1. (19)

Inequalities (17) and (19) define a polytope QSTAB(G), which is contained in FSTAB(G),

but is in general larger than STAB(G).

Recall that for a graph G, we denote by ω(G) the size of its largest clique, and by χ(G),

its chromatic number. A graph G is called perfect, if for every induced subgraph G′ of G,

we have ω(G′) = χ(G′). To be perfect is a rather strong structural property; nevertheless,

many interesting classes of graphs are perfect (bipartite graphs, their complements and their
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(1/2,1/2,1/2)

1x

2x

3x

Figure 3: The fractional stable set polytope of the triangle. The black dots are
incidence vectors of stable sets; the vertex (1/2, 1/2, 1/2) (closest to us) is not a
vertex of STAB(K3).

linegraphs; interval graphs; comparability and incomparability graphs of posets; chordal

graphs). We do not discuss perfect graphs, only to the extent needed to show their connection

with orthogonal representations.

The following deep characterization perfect graphs was conjectured by Berge in 1961 and

proved by Chudnovsky, Robertson, Seymour and Thomas [6].

Theorem 2.17 (The Strong Perfect Graph Theorem [6]) A graph is perfect if and

only if neither the graph nor its complement contains a chordless odd cycle longer than 3.

As a corollary we can formulate the “The Weak Perfect Graph Theorem” proved much

earlier [22]:

Theorem 2.18 The complement of a perfect graph is perfect.

From this it follows that in the definition of perfect graphs we could replace the equation

ω(G′) = χ(G′) by α(G′) = χ(G′). In particular, if G is a perfect graph, then α(G) = χ(G),

and so by Theorem 2.3,

Corollary 2.19 For every perfect graph G, Θ(G) = ϑ(G) = α(G) = χ(G).

Orthogonality constraints: For every orthonormal representation (vi, c) of G, we con-

sider the linear constraint

∑

i∈V

(cTvi)
2xi ≤ 1. (20)

It is easy to see that these inequalities are valid for STAB(G); we call them orthogonality

constraints. The solution set of non-negativity and orthogonality constraints is denoted by
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TSTAB(G). This construction was introduced by Grötschel, Lovász and Schrijver [13], who

also established the properties below.

It is clear that TSTAB is a closed, convex set. The incidence vector of any stable set S

satisfies (20) (we have seen this in the proof of Theorem 2.3). Furthermore, every clique con-

straint is an orthogonality constraint. Indeed, for every clique B, the constraint
∑

i∈B xi ≤ 1

is obtained from the orthogonal representation

i 7→
{
e1, i ∈ A,

ei, otherwise,
c = e1.

Hence STAB(G) ⊆ TSTAB(G) ⊆ QSTAB(G) for every graph G.

There is a dual characterization of TSTAB. For every orthonormal representation u =

(ui : i ∈ V ), consider the vector x(u) = ((cTui)
2 : i ∈ V ). Then

TSTAB(G) = {x(u) : (u, c) is an orthonormal representation of G}. (21)

This can be derived from semidefinite duality.

Not every orthogonality constraint follows from the clique constraints; in fact, the number

of essential orthogonality constraints is infinite in general:

Theorem 2.20 TSTAB(G) is polyhedral if and only if the graph is perfect. In this case

TSTAB = STAB = QSTAB.

While TSTAB is a rather complicated set, in many respects it behaves much better than,

say, STAB. For example, it has a very nice connection with graph complementation:

Theorem 2.21 TSTAB(G) is the antiblocker of TSTAB(G).

2.7 Algorithmic applications

Perhaps the most important consequence of the formulas proved in Section 2.3 is that the

value of ϑ(G) is polynomial time computable [11]. More precisely,

Theorem 2.22 There is a polynomial time algorithm that computes, for every graph G and

every ε > 0, a real number t such that

|ϑ(G)− t| < ε.

Algorithms proving this theorem can be based on almost any of our formulas for ϑ. The

simplest is to refer to 12, and the polynomial time solvability of semidefinite programs (see

the Background Material).

The significance of this fact is underlined if we combine it with Theorem 2.3: The two

important graph parameters α(G) and χ(G) are both NP-hard, but they have a polynomial

time computable quantity sandwiched between them. This fact is particularly useful for

perfect graphs.
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Corollary 2.23 The independence number and the chromatic number of a perfect graph are

polynomial time computable.

Theorem 2.22 extends to the weighted version of the theta function. Maximizing a linear

function over STAB(G) or QSTAB(G) is NP-hard; but, surprisingly, TSTAB behaves much

better: Every linear objective function can be maximized over TSTAB(G) (with arbitrarily

small error) in polynomial time. The maximum of
∑

i xi over TSTAB(G) is the familiar

function ϑ(G). See [14, 21] for more detail.

We mention another important application to a coloring problem. Suppose that somebody

gives a graph and guarantees that the graph is 3-colorable, without telling us its 3-coloring.

Can we find this 3-coloring? (This may sound artificial, but this kind of situation does arise

in cryptography and other data security applications; one can think of the hidden 3-coloring

as a “watermark” that can be verified if we know where to look.)

It is easy to argue that knowing that the graph is 3-colorable does not help: it is still

NP-hard to find the 3-coloration. But suppose that we would be satisfied with finding a

4-coloration, or 5-coloration, or (logn)-coloration; is this easier? It is known that to find a

4-coloration is still NP-hard, but little is known above this. Improving earlier results, Karger,

Motwani and Sudan [18] gave a polynomial time algorithm that, given a 3-colorable graph,

computes a coloring with O∗(n1/4) colors. More recently, this was improved by Blum and

Karger [5] to O∗(n3/14). The theorem behind the algorithm of Karger, Motwani and Sudan

is the following.

Theorem 2.24 For every 3-colorable graph G, we can construct in randomized polynomial

time a stable set of size n3/4/(3
√
lnn).

Proof. Let G = (V,E). We may assume that G contains a triangle (just add one hanging

from an edge). Then ω(G) = χ(G) = ϑ(G) = 3. If G contains a node i with degree n3/4,

then G[N(i)] is bipartite, and so it contains a stable set with n3/4/2 nodes (and we can find

in it easily). So we may suppose that all degrees are less than n3/4, and hence |E| < n7/4/4.

By Theorem 2.7, there are unit vectors ui ∈ R
n such that uT

i uj = −1/2 whenever ij ∈ E.

In other words, the angle between ui and uj is 120◦.

For given 0 < s < 1 and v ∈ Sn−1, let Cv,s denote a cap on Sn−1 cut off by a halfspace

vTx ≥ s. This cup has center v. Let its surface area be voln−1(Cv,s) = a(s)voln−1(S
n−1),

and let S = {i ∈ V : ui ∈ Cv,s}. Choosing the center v uniformly at random on Sn−1, the

expected number of points ui in Cv is a(s)n.

We want to bound the expected number of edges spanned by S. Let ij ∈ E, then the

probability that Cv contains both ui and uj is

b(s) =
voln−1(Cui

∩Cuj
)

voln−1(Sn−1)

14



So the expected number of edges induced by S is b(s)|E| < b(s)n7/4.

Deleting one endpoint of every edge induced by S, we get a stable set of nodes. Hence

α(G) ≥ |S|−|E(S)|, and taking expectation, we get

α(G) ≥ a(s)n−b(s)n7/4. (22)

So it suffices to estimate a(s) and b(s) as functions of s, and then choose the best s. This

is elementary computation in geometry, but it is spherical geometry in n-space, and the

computations are a bit tedious.

Any point x ∈ Cui
∩Cuj

satisfies uT

i x ≥ s and also uT

j x ≥ s, hence it satisfies

(ui+uj)
Tx ≥ 2s. (23)

Since ui+uj is a unit vector, this implies that Cui,s∩Cuj ,s ⊆ Cui+uj ,2s, and so b(s) ≤ a(2s).

Thus

α(G) ≥ a(s)n−a(2s)n7/4. (24)

It is known from geometry that

1

10s
√
n
(1−s2)(n−1)/2 < a(s) <

1

s
√
n
(1−s2)(n−1)/2.

Thus

α(G) ≥ a(s)n−a(2s)n7/4 ≥
√
n

10s
(1−s2)(n−1)/2− n5/4

4s
(1−4s2)(n−1)/2.

We want to choose s so that it maximizes the right side. By elementary computation we get

that s =
√
(lnn)/(2n) is an approximately optimal choice, which gives the estimate in the

theorem. �

The algorithm of Karger, Motwani and Sudan starts with computing an independent set

of size O∗(n3/4). Using the previous theorem, they find a stable set of size Ω(n3/4/
√
lnn).

Deleting this set from G and iterating, they get a coloring of G with O∗(n1/4) colors.

Exercise 2.25 If ϑ(G) = 2, then G is bipartite.

Exercise 2.26 (a) If H is an induced subgraph of G, then ϑ(H) ≤ ϑ(G). (b) If
H is a spanning subgraph of G, then ϑ(H) ≥ ϑ(G).

Exercise 2.27 Let G be a graph and v ∈ V . (a) ϑ(G−v) ≥ ϑ(G)−1. (b) If v is
an isolated node, then equality holds. (c) If v is adjacent to all other nodes, then
ϑ(G−v) = ϑ(G).

Exercise 2.28 Let G = (V,E) be a graph and let V = S1∪· · ·∪Sk be a partition
of V . (a) Then ϑ(G) ≤

∑

i ϑ(G[Si]). (b) If no edge connects nodes in different
sets Si, then equality holds. (c) Suppose that any two nodes in different sets Si

are adjacent. How can ϑ(G) be expressed in terms of the ϑ(G[Si])?
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Exercise 2.29 Let G = (V,E) be a graph, and for i ∈ V , let N(i) = V \(N(i)∪
{i} and Gi = G[N(i)]. Then

ϑ(G)(ϑ(G)−1)2 ≤
∑

i∈V

ϑ(Gi)
2.

Furthermore, every graph G = (V,E) has a node j such that

(ϑ(G)−1)2 ≤
∑

i∈V

ϑ(Gi)
2.

Exercise 2.30 For a graph G, let t(G) denote that radius of the smallest sphere
(in any dimension) on which a given graph G can be drawn so that the euclidean
distance between adjacent nodes is 1. Prove that t(G)2 = 1

2

(

1−1/ϑ(G)
)

.

Exercise 2.31 (a) Show that any stable set S provides a feasible solution of dual
program in (12). (b) Show that any k-coloring of G provides a feasible solution of
the primal program in (12). (c) Give a new proof of the Sandwich Theorem 2.3
based on (a) and (b).

Exercise 2.32 Prove that ϑ(G) is the maximum of the largest eigenvalues of
matrices (vT

i vj), taken over all orthonormal representations (vi) of G.

Exercise 2.33 Let G = (V,E) be a graph and let S, T ⊆ V . Then ϑ(G[S∪T ]) ≤
ϑ(G[S])+ϑ(G[T ]).

Exercise 2.34 (Alon and Kahale) Let G be a graph, v ∈ V , and let H be
obtained from G by removing v and all its neighbors. Prove that

ϑ(G) ≤ 1+
√

|V (H)|ϑ(H).

Exercise 2.35 The fractional chromatic number χ∗(G) is defined as the least
t for which there exists a family (Aj : j = 1, . . . , p) of stable sets in G, and
nonnegative weights (τj : j = 1, . . . , p) such that

∑

j
τj = t and

∑

j
τj1Aj

≥ 1V .

(a) Prove that χ∗(G) is equal to the largest s for which there exist nonnegative
weights (σi : i ∈ V ) such that

∑

i
σi = s and

∑

i∈A
σi ≤ 1 for every stable set A.

(b) Prove that ϑ(G) ≤ χ∗(G) ≤ χ(G).
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