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1 Minimum dimension

Perhaps the most natural way to be “economic” in constructing an orthogonal representation
is to minimize the dimension. We can say only a little about the minimum dimension of all
orthogonal representations, but we get interesting results if we impose some “non-degeneracy”
conditions. We will study three nondegeneracy conditions: general position, faithfulness, and

the strong Arnold property.

1.1 Minimum dimension with no restrictions

Let dmin(G) denote the minimum dimension in which G has an orthogonal representation.

The following facts are not hard to prove.

Lemma 1.1 For every graph G,

19(G) < dmin(G),

and

clog X(G)) < dmin(G) < x(G))

for some absolute constant ¢ > 0.

Proof. To prove the first inequality, let u: V(G) — R? be an orthogonal representation
of G in dimension d = dpin(G). Then i — u;ou; is another orthogonal representation; this
is in higher dimension, but ha the good “handle”
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which proves that J(G) < d.
The upper bound in the second inequality is trivial; the lower bound follows from the fact

that R? can be colored by C? colors for some constant C. O

The following inequality follows by the same tensor product construction as Lemma 77:
dmin(G& H) S dmin(G)dmin (H) (1)

It follows by Lemma 1.1 that we can use duyin(G) as an upper bound on ©(G); however, it
would not be better than ¥(G). On the other hand, if we consider orthogonal representations
over fields of finite characteristic, the dimension is an bound on the Shannon capacity (this

follows from (1), which remains valid), and it may be better than ¢ [3, 1].

1.2 General position orthogonal representations

The first non-degeneracy condition we study is general position: we assume that any d of the
representing vectors in R? are linearly independent. A result of Lovész, Saks and Schrijver

[6] finds an exact condition for this type of geometric representability.

Theorem 1.2 A graph with n nodes has a general position orthogonal representation in R¢

if and only if it is (n—d)-connected.

The condition that the given set of representing vectors is in general position is not
easy to check (it is NP-hard). A weaker, but very useful condition will be that the vectors
representing the nodes nonadjacent to any node v are linearly independent. We say that such
a representation is in locally general position.

It is almost trivial to see that every orthogonal representation that is in general position
is in locally general position. For this it suffices to notice that every node i has at most d—1
non-neighbors; indeed, these are represented in a (d—1)-dimensional subspace (orthogonal
to the vector representing i), and if they are linearly dependent, then some d of them are
linearly dependent, contradicting the condition that the representation is in general position.

Theorem 1.2 is proved in the following slightly more general form:

Theorem 1.3 If G is a graph with n nodes, then the following are equivalent:
(i) G has a general position orthogonal representation in RY;
(ii) G has a locally general position orthogonal representation in RY.

(iii) G is (n—d)-connected;

We describe the proof in a couple of installments. First, to illustrate the connection
between connectivity and orthogonal representations, we prove that (ii)=-(iii). Let x: V —
R? be an orthogonal representation in locally general position. Let Vj be a cutset of nodes of
G, then V = VUV UVs, where V1, Vo # ), and no edge connects V1 and V,. This implies that



the vectors representing V; are linearly independent, and similarly, the vectors representing V5
are linearly independent. Since the vectors representing Vi and Vs are mutually orthogonal,
all vectors representing V3 UV, are linearly independent. Hence d > |V; UV, = n—|V|, and
so |[Vo| > n—d.

The difficult part of the proof will be the construction of a general position orthogonal
(or orthogonal) representation for (n— d)-connected graphs, and we describe and analyze the
algorithm constructing the representation first. As a matter of fact, the following construction
is almost trivial, the difficulty lies in the proof of its validity.

Let 0 = (1,...,n) be any ordering of the nodes of G = (V, E). Let us choose vectors
f1,fs,... consecutively as follows. fj is any vector of unit length. Suppose that f; (1 <i < j)
are already chosen, then we choose f;;; randomly, subject to the constraints that it has to be
orthogonal to all previous vectors f; for which ¢ ¢ N(j+1). These orthogonality constraints
restrict f;41 to a linear subspace L;;1, and we choose it from the uniform distribution over
the unit sphere of L. Note that if G is (n —d)-connected, then every node of it has degree

at least n—d, and hence
dimL >d—#{i: i<j, v;v; ¢ E} >d—(d—1) =1,

and so f;;; can always be chosen.

This way we get a random mapping f : V — S9! i.e., a probability distribution over
(89=1V which we denote by j,. We call f the random sequential orthogonal representation
of G associated with the ordering (1, ...,n), or shortly, a sequential representation. We are

going to prove that this construction provides what we need:

Theorem 1.4 Let G be an (n—d)-connected graph. Fixz any ordering of its nodes and let f

be the sequential representation of G. Then with probability 1, f is in general position.

The sequential representation may depend on the initial ordering of the nodes. Let us

consider a simple example.

Example 1.5 Let G have four nodes a,b,c and d and two edges ac and bd. Consider a
sequential representation f in R3, associated with the given ordering. Since every node has
one neighbor and two non-neighbors, we can always find a vector orthogonal to the earlier
non-neighbors. The vectors f, and f}, are orthogonal, and f. is constrained to the plane be-;
almost surely, f. will not be parallel to f,, so together they span the plane f+. This means
that f;, which must be orthogonal to f, and f., must be parallel to f3.

Now suppose that we choose f, and f; in the opposite order: then f; will almost surely
not be parallel to fj,, but f. will be forced to be parallel with f,. So not only are the
two distributions fi(qp,c,qy and fi(a,p,4,c) different, but an event, namely fy[/fs, occurs with

probability 0 in one and probability 1 in the other.



Let us modify this example by connecting a and ¢ by an edge. Then the planes f; and
be are not orthogonal any more (almost surely). Choosing f,. € be first still determines the
direction of fj, but now it does not have to be parallel to fy; in fact, depending on f., it can
ba any unit vector in fal. The distributions fi(q p,c,q) and pi(a,p,a,c) are still different, but any
event that occurs with probability 0 in one will also occur with probability 0 in the other

(this is not obvious; see Exercise 1.21 below).

This example motivates the following considerations. The distribution of a sequential
representation may depend on the initial ordering of the nodes. The key to the proof will be
that this dependence is not too strong. We say that two probability measures p and v on
the same sigma-algebra S are mutually absolute continuous, if for any measurable subset A

of S, u(A) =0 if and only if ¥(A) = 0. The crucial step in the prof is the following lemma.

Lemma 1.6 If G is (n—d)-connected, then for any two orderings o and T of V', the distri-

butions p, and pr are mutually absolute continuous.

Before proving this lemma, we have to state and prove a simple technical fact. For a
subspace A C R%, we denote by AL its orthogonal complement. We need the elementary
relations (A+)+ = A and (A+B)* = At + B+

Lemma 1.7 Let A, B and C be mutually orthogonal linear subspaces of R with dim(C) > 2.
Select a unit vector ay uniformly from A+ C, and then select a unit vector by uniformly from
(B+C)Nat . Also, select a unit vector by uniformly from B+C, and then select a unit vector
ay uniformly from (A+C)Nby . Then the distributions of (a1, b1) and (ag, bs) are mutually

absolute continuous.

Proof. Letr = dim(A), s = dim(B) and ¢t = dim(C'). The special case whenr =0or s =0
is trivial. Suppose that r,s > 1 (by hypothesis, ¢t > 2).

Observe that a unit vector a in A+C can be written uniquely in the form (cos8)x+
(sinf)y, where x is a unit vector in A, y is a unit vector in C, and 6 € [0,7/2]. Uniform
selection of a means independent uniform selection of x and y, and an independent selection
of # from a distribution ¢+ that depends only on s and ¢t. Using that s,¢t > 1, it is easy to
see that (,; is mutually absolute continuous with respect to the uniform distribution on the
interval [0, 7/2].

So the pair (a;, b1) can be generated through five independent choices: a uniform unit
vector x; € A, a uniform unit vector z; € B, a pair of orthogonal unit vectors (y1,y2)
selected from C' (uniformly over all such pairs: this is possible since dim(C) > 2), and two
numbers 6, selected according to (s ; and 65 is selected according to ¢, ;—1. The distribution
of (ag, bs) is described similarly except that 6 is selected according to ¢, and 6; is selected

according to (g 1—1.



Since t > 2, the distributions ¢, ; and (,.+—1 are mutually absolute continuous and simi-
larly, (s+ and (s ;—1 are mutually absolute continuous, from which we deduce that the distri-

butions of (a1, by) and (ag, bs) are mutually absolute continuous. O
Next, we prove our main Lemma.

Proof of Lemma 1.6. It suffices to prove that if 7 is the ordering obtained from o by
swapping the nodes in positions j and j+1 (1 < j < n—1), then y, an p, are mutually
absolute continuous. Let us label the nodes so that o = (1,2,...,n).

Let f and g be sequential representations from the distributions u, and p,. It suffices to
prove that the distributions of fi,...,f;;1 and g1, ..., g;4+1 are mutually absolute continuous,
since conditioned on any given assignment of vectors to [j+ 1], the remaining vectors f;, and
g are generated in the same way, and hence the distributions p, and p, are identical. Also,
note that the distributions of f1,...,f;_; and g1,...,g;-1 are identical.

We have several cases to consider.

Case 1. j and j+1 are adjacent. When conditioned on fi,...,f;_1, the vectors f; and

f;+1 are independently chosen, so it does not mater in which order they are selected.

Case 2. j and j+1 are not adjacent, but they are joined by a path that lies entirely in
[f+1]. Let P be a shortest such path and t be its length (number of edges), so 2 < ¢ < j.
We argue by induction on j and ¢. Let ¢ be any internal node of P. We swap j and j+1 by
the following steps (Figure 1):

(1) Interchange ¢ and j, by successive adjacent swaps among the first j elements.
2) Swap ¢ and j+1.

3
4

Interchange j+1 and j, by successive adjacent swaps among the first j elements.

(2)
(3)
(4) Swap j and i.
(5)

5) Interchange j+1 and 4, by successive adjacent swaps among the first j elements.

j+1

\ J J J
N N N

(M (@) ©) “4) (&)

Figure 1: Interchanging j and j+1.

In each step, the new and the previous distributions of sequential representations are

mutually absolute continuous: in steps (1), (3) and (5) this is so because the swaps take



place place among the first j nodes, and in steps (2) and (4), because the nodes swapped are

at a smaller distance than ¢ in the graph distance.

Case 3. There is no path connecting j to j+1 in [j+1]. Let x1,...,%;_1 any selection
of vectors for the first j —1 nodes. It suffices to show that the distributions of (f;,f;41) and
(8j,85+1), conditioned on f; = g, =x; (i =1,...,j—1), are mutually absolute continuous.
Let J =[j—1], Up = N(j)NJ and Uy = N(j+1)NJ. Then J has a partition Wy UW; so
that Uy C Wy, Uy € Wy, and there is no edge between Wy and W7. Furthermore, it follows
that V'\[j+1] is a cutset, whence n—j—1>n—d and so j < d—1.

For S C J, let lin(S) denote the linear subspace of R? generated by the vectors x;, i € S.
Let

L=1in(J), Lo=1lin(J\Up), Li=Ilin(J\Uy).

Then f; is selected uniformly from the unit sphere in L7, and then f;+1 is selected uniformly
from the unit sphere in Li- ﬂfjJ-. On the other hand, g;1 is selected uniformly from the unit
sphere in Li-, and then g; is selected uniformly from the unit sphere in Lg- ﬂgj{H.

Let A= LNLg, B = LNL{ and C = L. We claim that A, B and C are mutually
orthogonal. It is clear that A C C+ = L, so A L C, and similarly, B L C. Furthermore,
Lo 2 lin(Wy), and hence Lg C lin(W;)*. So A = LNLg € LNlin(W;)* = lin(Wp). Since,
similarly, B C lin(W}), it follows that A L B.

Furthermore, we have Ly C L, and hence Ly and L+ are orthogonal subspaces. This
implies that (Lo+ L+)NL = Lo, and hence L = (Lo+LY)t + Lt = (LgNL)+ L+ = A+C.
It follows similarly that L{- = B+C.

Finally, notice that dim(C) = d—dim(L) > d—|J| > 2. So Lemma 1.7 applies, which
completes the proof. O

Proof of Theorem 1.4. Observe that the probability that the first d vectors in a sequential
representation are linearly dependent is 0. This event has then probability 0 in any other
sequential representation. Since we can start the ordering with any d-tuple of nodes, it follows

that the probability that the representation is not in general position is 0. (I

Proof of Theorem 1.3. We have seen the implications (i)=-(ii) and (ii)=-(iii), and Theorem
1.4 implies that (iii)=(i). O

1.3 Faithful orthogonal representations

An orthogonal representation is faithful if different nodes are represented by non-parallel
vectors and adjacent nodes are represented by non-orthogonal vectors.
We do not know how to determine the minimum dimension of a faithful orthogonal rep-

resentation. It was proved by Maehara and Rodl [7] that if the maximum degree of the



complementary graph G of a graph G is D, then G has a faithful orthogonal representation
in 2D dimensions. They conjectured that the bound on the dimension can be improved
to D+1. We show how to obtain their result from the results in Section 1.2, and that the

conjecture is true if we strengthen its assumption by requiring that G is sufficiently connected.

Corollary 1.8 Every (n—d)-connected graph on n nodes has a faithful general position or-

thogonal representation in RY.

Proof. It suffices to show that in a sequential representation, the probability of the event
that two nodes are represented by parallel vectors, or two adjacent nodes are represented by
orthogonal vectors, is 0. By the Lemma 1.6, it suffices to prove this for the representation

obtained from an ordering starting with these two nodes. But then the assertion is obvious.
O

Using the elementary fact that a graph with minimum degree n— D — 1 is at least (n —2D)-

connected, we get the result of Maehara and Rodl:

Corollary 1.9 If the mazimum degree of the complementary graph G of a graph G is D,

then G has a faithful orthogonal representation in 2D dimensions.

1.4 Orthogonal representations with the Strong Arnold Property

We survey results about another, nontrivial and deep non-degeneracy condition, with proofs.
Strong Arnold Property. Consider an orthogonal representation i — v; € R? of a graph

G. We can view this as a point in the R4V satisfying the quadratic equations

T

v;v; =0 (ij € E). (2)

Each of these equation defines a hypersurface in R4VI. We say that the orthogonal repre-
sentation i — v; has the Strong Arnold Property if the surfaces (2) intersect transversally at
this point. This means that their normal vectors are linearly independent.

This can be rephrased in more explicit terms as follows. For each nonadjacent pair
i,j € V, form the d x V matrix V¥ = e]v;, +e]Tvi. Then the Strong Arnold Property says
that the matrices V"7 are linearly independent.

Another way of saying this is that there is no symmetric V' x V matrix X # 0 such that
X;j=0ifi=jorij € F, and

ZXijVj =0 (3)

for every node 7. Since (3) means a linear dependence between the non-neighbors of i, every
orthogonal representation of a graph G in locally general position has the Strong Arnold

Property. This shows that the Strong Arnold Property can be thought of as some sort of



symmetrized version of locally general position. But the two conditions are not equivalent,

as the following example shows.

Example 1.10 (Triangular grid) Consider the graph A3z obtained by attaching a triangle
on each edge of a triangle (Figure 2). This graph has an orthogonal representation (v; : i =
1,...,6) in R3: vi, vy and vz are mutually orthogonal unit vectors, and v4 = vi+va,
Vs = v1+Vs, and vg = Vo + V3.

This representation is not in locally general position, since the nodes non-adjacent to
(say) node 1 are represented by linearly dependent vectors. But this representation satisfies
the Strong Arnold Property. Suppose that a symmetric matrix X satisfies (3). Since node 4
is adjacent to all the other nodes except node 3, X4 ; = 0 for j # 3, and therefore case i = 4
of (3) implies that X4 3 = 0. By symmetry, X34 = 0, and hence case i = 3 of (3) simplifies
to X3,1vi+X39vy = 0, which implies that X3 ; = 0 for all J. Going on similarly, we get

that all entries of X must be zero.

Figure 2: The graph As with an orthogonal representation that has the strong
Arnold property but is not in locally general position.

Algebraic width. Based on this definition, Colin de Verdiére [2] introduced an interesting
graph invariant related to connectivity (this is different from the better known “Colin de
Verdiére number” related to planarity). Let d be the smallest dimension in which G has a
faithful orthogonal representation with the Strong Arnold Property, and define wug(G) =
n—d. We call w,i(G) the algebraic width of the graph (the name refers to its connection
with tree width, see below).

This definition is meaningful, since it is easy to construct a faithful orthogonal representa-
tion in R™ (where n = |V(G)|), in which the representing vectors are almost orthogonal and
hence linearly independent, which implies that the Strong Arnold Property is also satisfied.

This definition can be rephrased in terms of matrices: consider a matrix N € RY*V with
the following properties:

{0 ifij ¢ B, i+ js,
#£0 ifije k.
(N2) N is positive semidefinite;

(N1) Ny

(N3) [Strong Arnold Property] If X is a symmetric nxn matrix such that X;; = 0
whenever ¢ = j or 15 € E, and NX =0, then X = 0.



Lemma 1.11 The algebraic width of a graph G is the mazximum corank of a matrix with
properties (N1)—(N3).

Example 1.12 (Complete graphs) The Strong Arnold Property is void for complete
graphs, and every representation is orthogonal, so we can use the same vector to repre-
sent every node. This shows that wae(K,) = n—1. For every noncomplete graph G,

Walg(G) < n—2, since a faithful orthogonal representation requires at least two dimensions.

Example 1.13 (Edgeless graphs) To have a faithful orthogonal representation, all repre-

senting vectors must be mutually orthogonal, hence waig(K,) = 0. It is not hard to see that

every other graph G has wag(G) > 1.

Example 1.14 (Paths) Every matrix N satisfying (N1) hasan (n—1) X (n— 1) nonsingular
submatrix, and hence by Lemma 1.11, w,i(P,) < 1. Since P, is connected, we know that

equality holds here.

Example 1.15 (Triangular grid II) To see a more interesting example, let us have a new
look at the graph As in Figure 2 (Example 1.10). Nodes 1, 2 and 3 must be represented by
mutually orthogonal vectors, hence every faithful orthogonal representation of Az must have
dimension at least 3. On the other hand, we have seen that Az has a faithful orthogonal

representation with the Strong Arnold Property in R3. It follows that wag(A3) = 3.

We continue with some easy bounds on the algebraic width. The condition that the
representation must be faithful implies that the vectors representing a largest stable set of
nodes must be mutually orthogonal, and hence the dimension of the representation is at least
a(G). This implies that

Walg(G) < n—a(G) = 7(G). (4)

By Theorem 1.3, every k-connected graph G has a faithful general position orthogonal rep-

resentation in R”~*, and hence
Walg(G) > k(G). (5)

We may also use the Strong Arnold Property. There are (g) —m orthogonality conditions,
and in an optimal representation they involve (n —wai(G))n variables. If their normal vectors

are linearly independent, then (%) —m < (n—waig(G))n, and hence

m
Walg(G) < 5 + . (6)

The most important consequence of the Strong Arnold Property is the following.

Lemma 1.16 The graph parameter waig(G) is minor-monotone.



The parameter has other nice properties, of which the following will be relevant:

Lemma 1.17 Let G be a graph, and let B C V(G) induce a complete subgraph. Let
G1,...,Gy be the connected components of G\ B, and let H; be the subgraph induced by
V(G;)UB. Then

Walg(G) = max Walg(H;).

Algebraic width, tree-width and connectivity. The monotone connectivity fmon(G) of
a graph G is defined as the maximum connectivity of any minor of G.

Tree-width is a parameter related to connectivity, introduced by Robertson and Seymour
[8] as an important element in their graph minor theory. Colin de Verdiere [2] defines a
closely related parameter, which we call the product-width wproa(G) of a graph G. This is
the smallest positive integer r for which G is a minor of a Cartesian sum K,OT', where T is
a tree.

The difference between the tree-width wiree(G) and product-width wp,oq(G) of a graph

G is at most 1:
Wiree(G) < Wynoa (G) < Wiree(G) +1. ™)

The lower bound was proved by Colin de Verdiere, the upper, by van der Holst [4]. Tt is
easy to see that Kmon(G) < Wiree(G) < Wprod(G). The parameter wpyoq(G) is clearly minor-
monotone.

The algebraic width is sandwiched between two of these parameters:

Theorem 1.18 For every graph G,
"‘@mon(G) < Walg(G) < Wprod(G)-

The upper bound was proved by Colin de Verdiere [2], while the lower bound follows
easily from the results in Section 1.2.

For small values, equality holds in Theorem 1.18; this was proved by Van der Holst [4]
and Kotlov [5].

Proposition 1.19 If w,ai(G) < 2, then fmon(G) = Walg(G) = Wproa(G).

A planar graph has kmon(G) < 5 (since every simple minor of it has a node with degree
at most 5). Since planar graphs can have arbitrarily large treewidth, the lower bound in
Theorem 1.18 can be very far from equality. The following example of Kotlov shows that in
general, equality does not hold in the upper bound in Theorem 1.18 either. It is not known

whether wp0a(G) can be bounded from above by some function waig(G).

Example 1.20 The k-cube QF has wai(QF) = O(2%/2) but wp0a(QF) = ©(2F). The com-
plete graph Kom+1 is a minor of Q*™+! (see Exercise 1.22).
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Exercise 1.21 Let ¥ and A be two planes in R® that are neither parallel nor
weakly orthogonal. Select a unit vector a; uniformly from >, and a unit vector
b, € Aﬁaf. Let the unit vectors az and bg be defined similarly, but selecting
by € A first (uniformly over all unit vectors), and then as from YNbs. Prove
that the distributions of (a1, b1) and (a2, b2) are different, but mutually absolute
continuous.

Exercise 1.22 (a) For every bipartite graph G, the graph GX K3 is a minor of
GOC4. (b) Kom+1 is a minor of Q*mrt
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