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1 Minimum dimension

Perhaps the most natural way to be “economic” in constructing an orthogonal representation

is to minimize the dimension. We can say only a little about the minimum dimension of all

orthogonal representations, but we get interesting results if we impose some “non-degeneracy”

conditions. We will study three nondegeneracy conditions: general position, faithfulness, and

the strong Arnold property.

1.1 Minimum dimension with no restrictions

Let dmin(G) denote the minimum dimension in which G has an orthogonal representation.

The following facts are not hard to prove.

Lemma 1.1 For every graph G,

ϑ(G) ≤ dmin(G),

and

c logχ(G)) ≤ dmin(G) ≤ χ(G))

for some absolute constant c > 0.

Proof. To prove the first inequality, let u : V (G) → R
d be an orthogonal representation

of G in dimension d = dmin(G). Then i 7→ ui ◦ui is another orthogonal representation; this

is in higher dimension, but ha the good “handle”

c =
1√
d
(e1 ◦e1+ · · ·+ed ◦ed),

for which we have

cT(ui ◦ui) =
1√
d

d
∑

j=1

(eTj ui)
2 =

1√
d
|ui|2 =

1√
d
,
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which proves that ϑ(G) ≤ d.

The upper bound in the second inequality is trivial; the lower bound follows from the fact

that Rd can be colored by Cd colors for some constant C. �

The following inequality follows by the same tensor product construction as Lemma ??:

dmin(G⊠H) ≤ dmin(G)dmin(H). (1)

It follows by Lemma 1.1 that we can use dmin(G) as an upper bound on Θ(G); however, it

would not be better than ϑ(G). On the other hand, if we consider orthogonal representations

over fields of finite characteristic, the dimension is an bound on the Shannon capacity (this

follows from (1), which remains valid), and it may be better than ϑ [3, 1].

1.2 General position orthogonal representations

The first non-degeneracy condition we study is general position: we assume that any d of the

representing vectors in R
d are linearly independent. A result of Lovász, Saks and Schrijver

[6] finds an exact condition for this type of geometric representability.

Theorem 1.2 A graph with n nodes has a general position orthogonal representation in R
d

if and only if it is (n−d)-connected.

The condition that the given set of representing vectors is in general position is not

easy to check (it is NP-hard). A weaker, but very useful condition will be that the vectors

representing the nodes nonadjacent to any node v are linearly independent. We say that such

a representation is in locally general position.

It is almost trivial to see that every orthogonal representation that is in general position

is in locally general position. For this it suffices to notice that every node i has at most d−1

non-neighbors; indeed, these are represented in a (d−1)-dimensional subspace (orthogonal

to the vector representing i), and if they are linearly dependent, then some d of them are

linearly dependent, contradicting the condition that the representation is in general position.

Theorem 1.2 is proved in the following slightly more general form:

Theorem 1.3 If G is a graph with n nodes, then the following are equivalent:

(i) G has a general position orthogonal representation in R
d;

(ii) G has a locally general position orthogonal representation in R
d.

(iii) G is (n−d)-connected;

We describe the proof in a couple of installments. First, to illustrate the connection

between connectivity and orthogonal representations, we prove that (ii)⇒(iii). Let x : V →
R

d be an orthogonal representation in locally general position. Let V0 be a cutset of nodes of

G, then V = V0∪V1∪V2, where V1, V2 6= ∅, and no edge connects V1 and V2. This implies that
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the vectors representing V1 are linearly independent, and similarly, the vectors representing V2

are linearly independent. Since the vectors representing V1 and V2 are mutually orthogonal,

all vectors representing V1∪V2 are linearly independent. Hence d ≥ |V1∪V2| = n−|V0|, and
so |V0| ≥ n−d.

The difficult part of the proof will be the construction of a general position orthogonal

(or orthogonal) representation for (n−d)-connected graphs, and we describe and analyze the

algorithm constructing the representation first. As a matter of fact, the following construction

is almost trivial, the difficulty lies in the proof of its validity.

Let σ = (1, ..., n) be any ordering of the nodes of G = (V,E). Let us choose vectors

f1, f2, . . . consecutively as follows. f1 is any vector of unit length. Suppose that fi (1 ≤ i ≤ j)

are already chosen, then we choose fj+1 randomly, subject to the constraints that it has to be

orthogonal to all previous vectors fi for which i /∈ N(j+1). These orthogonality constraints

restrict fj+1 to a linear subspace Lj+1, and we choose it from the uniform distribution over

the unit sphere of Lj+1. Note that if G is (n−d)-connected, then every node of it has degree

at least n−d, and hence

dimL ≥ d−#{i : i ≤ j, vivj /∈ E} ≥ d−(d−1) = 1,

and so fj+1 can always be chosen.

This way we get a random mapping f : V → Sd−1, i.e., a probability distribution over

(Sd−1)V , which we denote by µσ. We call f the random sequential orthogonal representation

of G associated with the ordering (1, ..., n), or shortly, a sequential representation. We are

going to prove that this construction provides what we need:

Theorem 1.4 Let G be an (n−d)-connected graph. Fix any ordering of its nodes and let f

be the sequential representation of G. Then with probability 1, f is in general position.

The sequential representation may depend on the initial ordering of the nodes. Let us

consider a simple example.

Example 1.5 Let G have four nodes a, b, c and d and two edges ac and bd. Consider a

sequential representation f in R
3, associated with the given ordering. Since every node has

one neighbor and two non-neighbors, we can always find a vector orthogonal to the earlier

non-neighbors. The vectors fb and fb are orthogonal, and fc is constrained to the plane f⊥b ;

almost surely, fc will not be parallel to fa, so together they span the plane f⊥. This means

that fd, which must be orthogonal to fa and fc, must be parallel to fb.

Now suppose that we choose fc and fd in the opposite order: then fd will almost surely

not be parallel to fb, but fc will be forced to be parallel with fa. So not only are the

two distributions µ(a,b,c,d) and µ(a,b,d,c) different, but an event, namely fb‖fd, occurs with

probability 0 in one and probability 1 in the other.
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Let us modify this example by connecting a and c by an edge. Then the planes f⊥a and

f⊥b are not orthogonal any more (almost surely). Choosing fc ∈ f⊥b first still determines the

direction of fd, but now it does not have to be parallel to fb; in fact, depending on fc, it can

ba any unit vector in f⊥a . The distributions µ(a,b,c,d) and µ(a,b,d,c) are still different, but any

event that occurs with probability 0 in one will also occur with probability 0 in the other

(this is not obvious; see Exercise 1.21 below).

This example motivates the following considerations. The distribution of a sequential

representation may depend on the initial ordering of the nodes. The key to the proof will be

that this dependence is not too strong. We say that two probability measures µ and ν on

the same sigma-algebra S are mutually absolute continuous, if for any measurable subset A

of S, µ(A) = 0 if and only if ν(A) = 0. The crucial step in the prof is the following lemma.

Lemma 1.6 If G is (n−d)-connected, then for any two orderings σ and τ of V , the distri-

butions µσ and µτ are mutually absolute continuous.

Before proving this lemma, we have to state and prove a simple technical fact. For a

subspace A ⊆ R
d, we denote by A⊥ its orthogonal complement. We need the elementary

relations (A⊥)⊥ = A and (A+B)⊥ = A⊥+B⊥.

Lemma 1.7 Let A, B and C be mutually orthogonal linear subspaces of Rd with dim(C) ≥ 2.

Select a unit vector a1 uniformly from A+C, and then select a unit vector b1 uniformly from

(B+C)∩a⊥1 . Also, select a unit vector b2 uniformly from B+C, and then select a unit vector

a2 uniformly from (A+C)∩b⊥
2 . Then the distributions of (a1,b1) and (a2,b2) are mutually

absolute continuous.

Proof. Let r = dim(A), s = dim(B) and t = dim(C). The special case when r = 0 or s = 0

is trivial. Suppose that r, s ≥ 1 (by hypothesis, t ≥ 2).

Observe that a unit vector a in A+C can be written uniquely in the form (cos θ)x+

(sin θ)y, where x is a unit vector in A, y is a unit vector in C, and θ ∈ [0, π/2]. Uniform

selection of a means independent uniform selection of x and y, and an independent selection

of θ from a distribution ζr,t that depends only on s and t. Using that s, t ≥ 1, it is easy to

see that ζs,t is mutually absolute continuous with respect to the uniform distribution on the

interval [0, π/2].

So the pair (a1,b1) can be generated through five independent choices: a uniform unit

vector x1 ∈ A, a uniform unit vector z1 ∈ B, a pair of orthogonal unit vectors (y1,y2)

selected from C (uniformly over all such pairs: this is possible since dim(C) ≥ 2), and two

numbers θ1 selected according to ζs,t and θ2 is selected according to ζr,t−1. The distribution

of (a2,b2) is described similarly except that θ2 is selected according to ζr,t and θ1 is selected

according to ζs,t−1.
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Since t ≥ 2, the distributions ζr,t and ζr,t−1 are mutually absolute continuous and simi-

larly, ζs,t and ζs,t−1 are mutually absolute continuous, from which we deduce that the distri-

butions of (a1,b1) and (a2,b2) are mutually absolute continuous. �

Next, we prove our main Lemma.

Proof of Lemma 1.6. It suffices to prove that if τ is the ordering obtained from σ by

swapping the nodes in positions j and j+1 (1 ≤ j ≤ n−1), then µσ an µτ are mutually

absolute continuous. Let us label the nodes so that σ = (1, 2, . . . , n).

Let f and g be sequential representations from the distributions µσ and µτ . It suffices to

prove that the distributions of f1, . . . , fj+1 and g1, . . . ,gj+1 are mutually absolute continuous,

since conditioned on any given assignment of vectors to [j+1], the remaining vectors fk and

gk are generated in the same way, and hence the distributions µσ and µτ are identical. Also,

note that the distributions of f1, . . . , fj−1 and g1, . . . ,gj−1 are identical.

We have several cases to consider.

Case 1. j and j+1 are adjacent. When conditioned on f1, . . . , fj−1, the vectors fj and

fj+1 are independently chosen, so it does not mater in which order they are selected.

Case 2. j and j+1 are not adjacent, but they are joined by a path that lies entirely in

[j+1]. Let P be a shortest such path and t be its length (number of edges), so 2 ≤ t ≤ j.

We argue by induction on j and t. Let i be any internal node of P . We swap j and j+1 by

the following steps (Figure 1):

(1) Interchange i and j, by successive adjacent swaps among the first j elements.

(2) Swap i and j+1.

(3) Interchange j+1 and j, by successive adjacent swaps among the first j elements.

(4) Swap j and i.

(5) Interchange j+1 and i, by successive adjacent swaps among the first j elements.

Figure 1: Interchanging j and j+1.

In each step, the new and the previous distributions of sequential representations are

mutually absolute continuous: in steps (1), (3) and (5) this is so because the swaps take
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place place among the first j nodes, and in steps (2) and (4), because the nodes swapped are

at a smaller distance than t in the graph distance.

Case 3. There is no path connecting j to j+1 in [j+1]. Let x1, . . . ,xj−1 any selection

of vectors for the first j−1 nodes. It suffices to show that the distributions of (fj , fj+1) and

(gj ,gj+1), conditioned on fi = gi = xi (i = 1, . . . , j−1), are mutually absolute continuous.

Let J = [j−1], U0 = N(j)∩J and U1 = N(j+1)∩J . Then J has a partition W0∪W1 so

that U0 ⊆ W0, U1 ⊆ W1, and there is no edge between W0 and W1. Furthermore, it follows

that V \ [j+1] is a cutset, whence n−j−1 ≥ n−d and so j ≤ d−1.

For S ⊆ J , let lin(S) denote the linear subspace of Rd generated by the vectors xi, i ∈ S.

Let

L = lin(J), L0 = lin(J \U0), L1 = lin(J \U1).

Then fj is selected uniformly from the unit sphere in L⊥
0 , and then fj+1 is selected uniformly

from the unit sphere in L⊥
1 ∩f⊥j . On the other hand, gj+1 is selected uniformly from the unit

sphere in L⊥
1 , and then gj is selected uniformly from the unit sphere in L⊥

0 ∩g⊥
j+1.

Let A = L∩L⊥
0 , B = L∩L⊥

1 and C = L⊥. We claim that A, B and C are mutually

orthogonal. It is clear that A ⊆ C⊥ = L, so A ⊥ C, and similarly, B ⊥ C. Furthermore,

L0 ⊇ lin(W1), and hence L⊥
0 ⊆ lin(W1)

⊥. So A = L∩L⊥
0 ⊆ L∩ lin(W1)

⊥ = lin(W0). Since,

similarly, B ⊆ lin(W1), it follows that A ⊥ B.

Furthermore, we have L0 ⊆ L, and hence L0 and L⊥ are orthogonal subspaces. This

implies that (L0+L⊥)∩L = L0, and hence L⊥
0 = (L0+L⊥)⊥+L⊥ = (L⊥

0 ∩L)+L⊥ = A+C.

It follows similarly that L⊥
1 = B+C.

Finally, notice that dim(C) = d−dim(L) ≥ d−|J | ≥ 2. So Lemma 1.7 applies, which

completes the proof. �

Proof of Theorem 1.4. Observe that the probability that the first d vectors in a sequential

representation are linearly dependent is 0. This event has then probability 0 in any other

sequential representation. Since we can start the ordering with any d-tuple of nodes, it follows

that the probability that the representation is not in general position is 0. �

Proof of Theorem 1.3. We have seen the implications (i)⇒(ii) and (ii)⇒(iii), and Theorem

1.4 implies that (iii)⇒(i). �

1.3 Faithful orthogonal representations

An orthogonal representation is faithful if different nodes are represented by non-parallel

vectors and adjacent nodes are represented by non-orthogonal vectors.

We do not know how to determine the minimum dimension of a faithful orthogonal rep-

resentation. It was proved by Maehara and Rödl [7] that if the maximum degree of the
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complementary graph G of a graph G is D, then G has a faithful orthogonal representation

in 2D dimensions. They conjectured that the bound on the dimension can be improved

to D+1. We show how to obtain their result from the results in Section 1.2, and that the

conjecture is true if we strengthen its assumption by requiring that G is sufficiently connected.

Corollary 1.8 Every (n−d)-connected graph on n nodes has a faithful general position or-

thogonal representation in R
d.

Proof. It suffices to show that in a sequential representation, the probability of the event

that two nodes are represented by parallel vectors, or two adjacent nodes are represented by

orthogonal vectors, is 0. By the Lemma 1.6, it suffices to prove this for the representation

obtained from an ordering starting with these two nodes. But then the assertion is obvious.

�

Using the elementary fact that a graph with minimum degree n−D−1 is at least (n−2D)-

connected, we get the result of Maehara and Rödl:

Corollary 1.9 If the maximum degree of the complementary graph G of a graph G is D,

then G has a faithful orthogonal representation in 2D dimensions.

1.4 Orthogonal representations with the Strong Arnold Property

We survey results about another, nontrivial and deep non-degeneracy condition, with proofs.

Strong Arnold Property. Consider an orthogonal representation i 7→ vi ∈ R
d of a graph

G. We can view this as a point in the R
d|V |, satisfying the quadratic equations

vT

i vj = 0 (ij ∈ E). (2)

Each of these equation defines a hypersurface in R
d|V |. We say that the orthogonal repre-

sentation i 7→ vi has the Strong Arnold Property if the surfaces (2) intersect transversally at

this point. This means that their normal vectors are linearly independent.

This can be rephrased in more explicit terms as follows. For each nonadjacent pair

i, j ∈ V , form the d×V matrix V ij = eTi vj+eTj vi. Then the Strong Arnold Property says

that the matrices V ij are linearly independent.

Another way of saying this is that there is no symmetric V ×V matrix X 6= 0 such that

Xij = 0 if i = j or ij ∈ E, and

∑

j

Xijvj = 0 (3)

for every node i. Since (3) means a linear dependence between the non-neighbors of i, every

orthogonal representation of a graph G in locally general position has the Strong Arnold

Property. This shows that the Strong Arnold Property can be thought of as some sort of
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symmetrized version of locally general position. But the two conditions are not equivalent,

as the following example shows.

Example 1.10 (Triangular grid) Consider the graph ∆3 obtained by attaching a triangle

on each edge of a triangle (Figure 2). This graph has an orthogonal representation (vi : i =

1, . . . , 6) in R
3: v1, v2 and v3 are mutually orthogonal unit vectors, and v4 = v1+v2,

v5 = v1+v3, and v6 = v2+v3.

This representation is not in locally general position, since the nodes non-adjacent to

(say) node 1 are represented by linearly dependent vectors. But this representation satisfies

the Strong Arnold Property. Suppose that a symmetric matrix X satisfies (3). Since node 4

is adjacent to all the other nodes except node 3, X4,j = 0 for j 6= 3, and therefore case i = 4

of (3) implies that X4,3 = 0. By symmetry, X3,4 = 0, and hence case i = 3 of (3) simplifies

to X3,1v1+X3,2v2 = 0, which implies that X3,j = 0 for all J . Going on similarly, we get

that all entries of X must be zero.

Figure 2: The graph ∆3 with an orthogonal representation that has the strong
Arnold property but is not in locally general position.

Algebraic width. Based on this definition, Colin de Verdière [2] introduced an interesting

graph invariant related to connectivity (this is different from the better known “Colin de

Verdière number” related to planarity). Let d be the smallest dimension in which G has a

faithful orthogonal representation with the Strong Arnold Property, and define walg(G) =

n−d. We call walg(G) the algebraic width of the graph (the name refers to its connection

with tree width, see below).

This definition is meaningful, since it is easy to construct a faithful orthogonal representa-

tion in R
n (where n = |V (G)|), in which the representing vectors are almost orthogonal and

hence linearly independent, which implies that the Strong Arnold Property is also satisfied.

This definition can be rephrased in terms of matrices: consider a matrix N ∈ R
V ×V with

the following properties:

(N1) Nij

{

= 0 if ij /∈ E, i 6= j;,

6= 0 if ij ∈ E.

(N2) N is positive semidefinite;

(N3) [Strong Arnold Property] If X is a symmetric n×n matrix such that Xij = 0

whenever i = j or ij ∈ E, and NX = 0, then X = 0.
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Lemma 1.11 The algebraic width of a graph G is the maximum corank of a matrix with

properties (N1)–(N3).

Example 1.12 (Complete graphs) The Strong Arnold Property is void for complete

graphs, and every representation is orthogonal, so we can use the same vector to repre-

sent every node. This shows that walg(Kn) = n−1. For every noncomplete graph G,

walg(G) ≤ n−2, since a faithful orthogonal representation requires at least two dimensions.

Example 1.13 (Edgeless graphs) To have a faithful orthogonal representation, all repre-

senting vectors must be mutually orthogonal, hence walg(Kn) = 0. It is not hard to see that

every other graph G has walg(G) ≥ 1.

Example 1.14 (Paths) Every matrixN satisfying (N1) has an (n−1)×(n−1) nonsingular

submatrix, and hence by Lemma 1.11, walg(Pn) ≤ 1. Since Pn is connected, we know that

equality holds here.

Example 1.15 (Triangular grid II) To see a more interesting example, let us have a new

look at the graph ∆3 in Figure 2 (Example 1.10). Nodes 1, 2 and 3 must be represented by

mutually orthogonal vectors, hence every faithful orthogonal representation of ∆3 must have

dimension at least 3. On the other hand, we have seen that ∆3 has a faithful orthogonal

representation with the Strong Arnold Property in R
3. It follows that walg(∆3) = 3.

We continue with some easy bounds on the algebraic width. The condition that the

representation must be faithful implies that the vectors representing a largest stable set of

nodes must be mutually orthogonal, and hence the dimension of the representation is at least

α(G). This implies that

walg(G) ≤ n−α(G) = τ(G). (4)

By Theorem 1.3, every k-connected graph G has a faithful general position orthogonal rep-

resentation in R
n−k, and hence

walg(G) ≥ κ(G). (5)

We may also use the Strong Arnold Property. There are
(

n
2

)

−m orthogonality conditions,

and in an optimal representation they involve (n−walg(G))n variables. If their normal vectors

are linearly independent, then
(

n
2

)

−m ≤ (n−walg(G))n, and hence

walg(G) ≤ n+1

2
+
m

n
. (6)

The most important consequence of the Strong Arnold Property is the following.

Lemma 1.16 The graph parameter walg(G) is minor-monotone.
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The parameter has other nice properties, of which the following will be relevant:

Lemma 1.17 Let G be a graph, and let B ⊆ V (G) induce a complete subgraph. Let

G1, . . . , Gk be the connected components of G\B, and let Hi be the subgraph induced by

V (Gi)∪B. Then

walg(G) = max
i

walg(Hi).

Algebraic width, tree-width and connectivity. The monotone connectivity κmon(G) of

a graph G is defined as the maximum connectivity of any minor of G.

Tree-width is a parameter related to connectivity, introduced by Robertson and Seymour

[8] as an important element in their graph minor theory. Colin de Verdière [2] defines a

closely related parameter, which we call the product-width wprod(G) of a graph G. This is

the smallest positive integer r for which G is a minor of a Cartesian sum Kr�T , where T is

a tree.

The difference between the tree-width wtree(G) and product-width wprod(G) of a graph

G is at most 1:

wtree(G) ≤ wprod(G) ≤ wtree(G)+1. (7)

The lower bound was proved by Colin de Verdière, the upper, by van der Holst [4]. It is

easy to see that κmon(G) ≤ wtree(G) ≤ wprod(G). The parameter wprod(G) is clearly minor-

monotone.

The algebraic width is sandwiched between two of these parameters:

Theorem 1.18 For every graph G,

κmon(G) ≤ walg(G) ≤ wprod(G).

The upper bound was proved by Colin de Verdière [2], while the lower bound follows

easily from the results in Section 1.2.

For small values, equality holds in Theorem 1.18; this was proved by Van der Holst [4]

and Kotlov [5].

Proposition 1.19 If walg(G) ≤ 2, then κmon(G) = walg(G) = wprod(G).

A planar graph has κmon(G) ≤ 5 (since every simple minor of it has a node with degree

at most 5). Since planar graphs can have arbitrarily large treewidth, the lower bound in

Theorem 1.18 can be very far from equality. The following example of Kotlov shows that in

general, equality does not hold in the upper bound in Theorem 1.18 either. It is not known

whether wprod(G) can be bounded from above by some function walg(G).

Example 1.20 The k-cube Qk has walg(Q
k) = O(2k/2) but wprod(Q

k) = Θ(2k). The com-

plete graph K2m+1 is a minor of Q2m+1 (see Exercise 1.22).
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Exercise 1.21 Let Σ and ∆ be two planes in R
3 that are neither parallel nor

weakly orthogonal. Select a unit vector a1 uniformly from Σ, and a unit vector
b1 ∈ ∆∩a⊥

1 . Let the unit vectors a2 and b2 be defined similarly, but selecting
b2 ∈ ∆ first (uniformly over all unit vectors), and then a2 from Σ∩b⊥

2 . Prove
that the distributions of (a1,b1) and (a2,b2) are different, but mutually absolute
continuous.

Exercise 1.22 (a) For every bipartite graph G, the graph G⊠K2 is a minor of
G�C4. (b) K2m+1 is a minor of Q2m+1.
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