
Chapter 4

Square tilings

We can also represent planar graphs by squares, rather then circles, in the plane (with some

mild restrictions). There are in fact two quite different ways of doing this: the squares can

correspond to the edges (a classic result of Brooks, Smith, Stone and Tutte), or the squares

can correspond to the nodes (a more recent result of Schramm).

4.1 Electric current through a rectangle

A beautiful connection between square tilings and harmonic functions was described in the

classic paper of Brooks, Smith, Stone and Tutte [1]. They considered tilings of squares by

smaller squares, and used a physical model of current flows to show that such tilings can

be obtained from any connected planar graph. Their ultimate goal was to construct tilings

of a square with squares whose edge-lengths are all different; this will not be our concern;

we’ll allow squares that are equal and also the domain being tiled can be a rectangle, not

necessarily a square.

Consider tiling T of a rectangle R with a finite number of squares, whose sides are parallel

to the coordinate axes. We can associate a planar map with this tiling as follows. Represent

any maximal horizontal segment composed of edges of the squares by a single node (say,

positioned at the midpoint of the segment). Each square “connects” two horizontal segments,

and we can represent it by an edge connecting the two corresponding nodes, directed top-

down. We get a directed graph GT (Figure 4.1), with a single source s (representing the

upper edge of the rectangle) and a single sink t (representing the upper edge). It is easy to

see that graph GT is planar.

A little attention must be paid to points where four squares meet. Suppose that squares

A,B,C,D share a corner p, where A is the upper left, and B,C,D follow clockwise. In this

case, we may consider the lower edges of A and B to belong to a single horizontal segment,

or to belong to different horizontal segments. In the latter case, we may or may not imagine

that there is an infinitesimally small square sitting at p. What this means is that we have to
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Figure 4.1: The Brooks–Smith–Stone–Tutte construction

declare if the four edges of GT corresponding to A, B, C and D form two pairs of parallel

edges, an empty quadrilateral, or a quadrilateral with a horizontal diagonal. We can orient

this horizontal edge arbitrarily (Figure 4.2).

Figure 4.2: Possible declarations about four squares meeting at a point

If we assign the edge length of each square to the corresponding edge, we get a flow f

from s to t: If a node v represents a segment I, then the total flow into v is the sum of edge

length of squares attached to I from the top, while the total flow out of v is the sum of edge

length of squares attached to I from the bottom. Both of these sums are equal to the length

of I.

Let h(v) denote the distance of node v from the upper edge of R. Since the edge-length

of a square is also the difference between the y-coordinates of its upper and lower edges, the

function h is harmonic:

h(i) =
1

di

∑

j∈N(i)

h(j)

for every node different from s and t (Figure 4.1).
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It is not hard to see that this construction can be reversed:

Theorem 4.1.1 For every connected planar map G with two specified nodes s and t on the

unbounded face, there is a unique tiling T of a rectangle such that G ∼= GT .

Figure 4.3: A planar graph and the square tiling generated from it.

4.2 Tangency graphs of square tilings

Let R be a rectangle in the plane, and consider a tiling of R by squares. Let us add four

further squares attached to each edge of R from the outside, sharing the edge with R. We

want to look at the tangency graph of this family of squares, which we call shortly the

tangency graph of the tiling of R.

The tangency graph of the squares may not be planar. Let us try to draw the tangency

graph in the plane by representing each square by its center and connecting the centers of

touching squares by a straight line segment. Similarly as in the preceding section, we get

into trouble when four squares share a vertex, in which case two edges will cross at this

vertex. In this case we specify arbitrarily one diametrically opposite pair as “infinitesimally

overlapping”, and connect the centers of these two but not the other two centers. We call

this a resolved tangency graph.

Every resolved tangency graph is planar, and it is easy to see that the unbounded country

is a quadrilateral, and all other countries are triangles; briefly, it is a triangulation of a

quadrilateral (Figure 4.4). It is easy to see that this graph does not contain a separating

3-cycle.

Under somewhat stronger conditions, this fact has a converse, due to Schramm [2].

Theorem 4.2.1 Every planar map in which the unbounded country is a quadrilateral, all

other countries are triangles, and is not separated by a 3-cycle or 4-cycle, can be represented

as a resolved tangency graph of a square tiling of a rectangle.
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Figure 4.4: The resolved tangency graph of a tiling of a rectangle by squares. The

numbers indicate the edge length of the squares

Schramm proves a more general theorem, in which separating cycles are allow; the prize

to pay is that he must allow degenerate squares with edge-length 0. It is easy to see that

a separating triangle forces everything inside it to degenerate in this sense, and so we don’t

loose anything by excluding these. Separating 4-cycles may or may not force degeneracy, and

it does not seem easy to tell when they do.

Before proving this theorem, we need a lemma from combinatorial optimization. Let G

be a planar triangulation of a quadrilateral abcd. We assign a real variable xi to each node

i 6= a, b, c, d (this will eventually mean the side length of the square representing i, but at the

moment, it is just a variable). Let V ′(P ) denote the set of internal nodes of a path P , and

consider the following conditions:

xi ≥ 0 for all nodes i, (4.1)
∑

i∈V ′(P )

xi ≥ 1 for all a–c paths P . (4.2)

Let K ⊆ R
V denote the solution set of these inequalities. It is clear that K is an ascending

polyhedron.

Lemma 4.2.2 The vertices of K are indicator vectors of sets V ′(Q), where Q is a b–d paths.

The blocker of K is defined by the inequalities

xi ≥ 0 for all nodes i, (4.3)
∑

i∈V ′(Q)

xi ≥ 1 for all b–d paths Q. (4.4)

The vertices of Kbl are indicator vectors of sets V ′(P ), where P is an a–c path.

These facts can be derived from the Max-Flow-Min-Cut Theorem.
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Proof of Theorem 4.2.1. Consider the solution x of (4.1)–(4.2) minimizing the objective

function
∑

i x
2
i , and let R2 be the minimum value. By Duality Theorem for blocking polyhe-

dra (see the Background Material), y = (1/R2)x minimizes the same objective function over

Kbl. Let us rescale these vectors to get z = 1
R
x = Ry.

It will be convenient to define za = zc = R and zb = zd = 1/R. then we have

∑

i∈V ′(P )

zi ≥
1

R
for all a–c paths P (4.5)

∑

i∈V ′(Q)

zi ≥ R for all b–d paths Q (4.6)

∑

i∈V \{a,b,c,d}

z2i = 1. (4.7)

For each edge ij, we define its z-length as 1
2zi+

1
2zj . This defines the z-length of any path

as the sum of z-lengths of its edges, and the z-distance of d(u, v) of two nodes u and v, as

the minimum z-length of a path connecting them. It is clear that for adjacent nodes i and

j, we have d(i, j) = 1
2zi+

1
2zj . Using the trivial observation that in the optimum solution

of (4.1)–(4.2) at least one constraint must be satisfied with equality, we can express the

conditions on z as d(a, c) = d(b, d) = R+ 1
R
.

We can tell now what will be the squares representing G: every node i will be represented

by a square Si with center pi = (d(a, i), d(b, i)) and side zi. To prove that this construction

works will take substantially more work.

Let us call an a–c path tight, if equality holds in (4.5), and let us define tight b–d paths

analogously. The paths abc, adc, bad and bcd are tight. It follows from the optimality of x

and y that every node i with zi > 0 is contained in a tight a–c path as well as in a tight b–d

path.

Tight paths have the following crucial property. Let P and P ′ be two tight a–c paths,

and suppose that they have an internal node w in common. Let P [a, w] denote the subpath

of P between a and w, then S = P [a, w]∪P ′[w, c] and T = P ′[a, w]∪P [w, c] are connected

subgraphs containing a and c, and hence they contain a–c paths S0 and T0. But then

2

R
= z(V ′(P ))+z(V ′(P ′)) ≥ z(V ′(S0))+z(V ′(T0)) ≥

2

R
.

It follows that S0 and T0 must be tight paths themselves. We say that these paths arise from

P and P ′ by swapping at w.

We know that y is in the polyhedron defined by (4.1)–(4.2), and so it can be written

as a convex combination of vertices, which are indicator vectors of sets V ′(P ), where P is

an a–c path. Let 1P denote the indicator vector of V (P ) (the endpoints included), then

the corresponding convex combination of vectors 1P gives 1 at the nodes a and c. Hence z,
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restricted to V \{b, d}, can be written as

z =
∑

P∈P

λP1P , (4.8)

where P is a set of a–c paths, λP > 0 and
∑

P λP = R. Similarly, we have a decomposition

z =
∑

Q∈Q

µQ1Q, (4.9)

where the Q is a set of b–d paths, µj > 0 and
∑

j µj = 1/R. Trivially a node v has zv > 0 if

and only if it is contained in one of the paths in P (equivalently, in one of the paths in Q).

Claim 1 |V (P )∩V (Q)| = 1 for all P ∈ P , Q ∈ Q.

It is trivial from the topology of G that |V (P )∩V (Q)| ≥ 1. On the other hand, (4.7)

implies that

1 =
∑

i∈V \{a,b,c,d}

z2i =
(

∑

P

λP1P

)T(∑

Q

µQ1Q

)

=
∑

P,Q

λPµQ|V (P )∩V (Q)|

≥
∑

P,Q

λPµQ =
(

∑

P

λP

)(

∑

Q

µQ

)

= 1.

We must have equality here, which proves the Claim.

Claim 2 All paths in P and Q are tight.

Indeed, if (say) Q ∈ Q, then

∑

i∈V ′(Q)

zi = zT1Q =
∑

P∈P

λP1
T

P1Q =
∑

P∈P

λP |V (P )∩V (Q)| =
∑

P∈P

λP = R.

One consequence of this claim is that the paths in P and Q are chordless, since if (say)

P ∈ P had a cord uv, then bypassing the part of P between u and v would decrease its

length, which would contradict (4.5).

Another way of say Claim 2 is that all paths in P are shortest a–c paths (with respect

to the z-length). This implies that all their subpaths are shortest as well. Then for any

u ∈ V ′(P ), this last observation implies that

d(a, u) =
za
2
+
zu
2
+

∑

i∈V ′(P [a,u])

zi. (4.10)

Let us fix a node u 6= a, b, c, d. Every path in P goes either “left” of u (i.e., separates

u from b), or through u, or “right” of u. Let P−
u , Pu and P+

u denote these three sets.

Similarly, we can partition Q = Q−
u ∪QuQ+

u according to whether a path in Q goes “above”

u (separating u from a), or through u, or “below” u. If P ∈ Q is any path through u, then it
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is easy to tell which paths in Q go above u: exactly those, whose unique common node with

P is between a and u. Hence

d(a, u) =
za
2
+

zu
2
+

∑

i∈V ′(P [a,u])

zi =
za
2
+
zu
2
+

∑

i∈V ′(P [a,u])

µ(Qi)

=
R

2
+

1

2
µ(Qu)+µ(Q−

u ). (4.11)

Claim 3 Every node i has zi > 0.

Suppose that there are nodes with zi = 0, and let H be a connected component of the

subgraph induced by these nodes. Since no path in P goes through any node in H , every

path in P goes either left of all nodes in H or right of all nodes in H . Every neighbor v

of H has zv > 0, and hence it is contained both on a path in P and a path in Q. By our

assumption that there are no separating 3- and 4-cycles, H has at least 5 neighbors, so there

must be two neighbors v and v′ of H that are both contained (say) in paths in P to the left

of H and in paths in Q above H . Let P ∈ P go through v and left of H , and let Q ∈ Q go

through v and above H . Let P ′ and Q′ be defined analogously.

The paths P and Q intersect at v and at no other node, by Claim 1. Clearly H must be

in the (open) region T bounded by P [v, c]∪Q[v, d]∪{cd}, and since v′ is a neighbor of H , it

must be in T or on its boundary. If v′ ∈ V ′(P [v, c], then Q′ goes below v, hence Q′ goes below

the neighbor of v in H , which contradicts its definition. We get a similar contradiction if

v′ ∈ V ′(Q(v, d)). Finally if v′ ∈ T , then both P ′ and Q′ must enter T (when starting at a and

b, respectively). Since P ′ is to the left of v, its unique intersection with Q must be on Q[a, v],

and hence P ′ must enter R crossing P [v, c]. Similarly Q′ must enter T crossing Q[v, d]. But

then P ′ and Q′ must have an intersection point before entering R, which together with v′

violates Claim 1. This completes the proof of Claim 3.

Claim 4 Let ij ∈ E(G). Then one of the following possibilities hold:

(i) ij lies on one of the paths in P. Then |d(a, i)−d(a, j)| = d(i, j), but |d(b, i)−d(b, j)| <

d(i, j).

(ii) ij lies on one of the paths in Q. Then |d(b, i)−d(b, j)| = d(i, j), but |d(a, i)−d(a, j)| <

d(i, j).

(iii) No path in P∪Q goes through ij. Then |d(b, i)−d(b, j)| = |d(a, i)−d(a, j)| = d(i, j).

Claim 1 implies that no edge can be contained in a P-path as well as in a Q-path. If

ij ∈ E(P ) for some P ∈ P , then |d(a, i)−d(a, j)| = d(i, j) by elementary properties of

shortest paths. Every path in P that goes left of i goes either left of j or through it, and
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vice versa. Hence by (4.11),

d(b, i)−d(b, j) =
1

2
λ(Pi)+λ(P−

i )−
1

2
λ(Pj)−λ(P−

j )

=
1

2
λ(Pj)+

1

2
λ(Pi)−λ(Pi∩P−

j )−λ(Pj \P
−
i )

≤
1

2
λ(Pj)+

1

2
λ(Pi) = d(i, j),

and if equality holds then P−
i ⊇ Pj , but this would contradict the assumption that Pi∩Pj 6=

∅. This proves (i). The proof of (ii) is similar.

Suppose that no path of P or Q contains the edge ij. Let P ∈ Pi, and suppose that P

goes left of j. We claim that every path in Pj goes right of i. Suppose that there is a path

P ′ ∈ Pj∩P−
i . Then clearly P and P ′ must intersect at a node w such that i ∈ P [a, w] and

j ∈ P ′[w, c] (perhaps with the roles of a and c interchanged). Then swapping at w we get a

tight a–c path such that ij is a chord of it, which is impossible.

So it follows that P−
i ∪Pi = P−

j . Hence

d(a, j)−d(a, i) =
1

2
λ(Pj)+λ(P−

j )−
1

2
λ(Pi)−λ(P−

i ) =
1

2
λ(Pi)+

1

2
λ(Pj) = d(i, j).

The other equation follows similarly.

We need a somewhat similar assertion concerning non-adjacent pairs.

Claim 5 Let i, j ∈ V , ij /∈ E(G). Then either |d(a, i)−d(a, j)| > 1
2zi+

1
2zj, or |d(b, i)−

d(b, j)| > 1
2zi+

1
2zj, or |d(a, i)−d(a, j)| = |d(b, i)−d(b, j)| = 1

2zi+
1
2zj.

If there is a tight a–c path going through i and j, then

|d(a, i)−d(a, j)| = d(i, j) >
1

2
zi+

1

2
zj.

So we may assume that there is no tight a–c path, and similarly no tight b–d path, through i

and j. Similarly as in the proof of Claim 4(iii), we get that P−
i ∪Pi = P−

j (or the other way

around), which implies that |d(a, j)−d(a, i)| = 1
2zi+

1
2zj . it follows similarly that |d(b, j)−

d(b, i)| = 1
2zi+

1
2zj

Now it is quite easy to verify that the squares Si defined at the beginning of the proof give

a representation of G. By Claims 4 and 5, we cannot have simultaneously |d(a, i)−d(a, j)| <
1
2zi+

1
2zj and |d(b, i)−d(b, j)| < 1

2zi+
1
2zj for any two nodes i and j, which means that the

squares Si (i ∈ V ) have no interior point in common. The three alternatives (i)–(iii) in Claim

4 imply that if ij ∈ E, then Si and Sj have a boundary point in common. Thus we can

consider G as drawn in the plane so that node i is at the center pi of the square Si, and

every edge ij is a straight segment connecting pi and pj .

This gives a planar embedding of G. Indeed, we know from Claim 4 that every edge ij

is covered by the squares Si and Sj . This implies that edges do not cross, except possibly
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in the degenerate case when four squares Si, Sj , Sk, Sl share a vertex (in this clockwise order

around the vertex, starting at the Northwest), and ik, jl ∈ E. Since the squares Si and Sj

are touching along their vertical edges, we have |d(a, i)−d(a, j)| < 1
2zi+

1
2zj and d(b, j)−

d(b, i) = 1
2zi+

1
2zj . The inequality implies that there is a path in Q ∈ Q through i and

j; the equation implies that i and j are consecutive points on this path. Hence ij ∈ E.

Similarly, jk, kl, li ∈ E, and hence i, j, k, l form a complete 4-graph. But this is impossible

in a triangulation of a quadrilateral that has no separating triangles.

Next, we argue that the squares Si (i ∈ V \{a, b, c, d}) tile the rectangleR. The inequality

d(a, i) ≥ 1
2za+

1
2zi, along with three analogous inequalities, implies that Si ⊆ R for every

(i ∈ V \{a, b, c, d}). On the other hand, every point of R is contained in a finite country F of

G, which is a triangle uvw. The squares Su, Sv and Sw are centered at the vertices, and each

edge is covered by the two squares centered at its endpoints. Elementary geometry implies

that these three squares cover the whole triangle.

Finally, we show that an appropriately resolved tangency graph of the squares Si is equal

to G. By the above, it contains G (where for edges of type (iii), the 4-corner is resolved so

as to get the edge of G). Since G is a triangulation, the containment cannot be proper, so G

is the whole tangency graph. �

Exercise 4.2.3 Prove that if G is a resolved tangency graph of a square tiling of

a rectangle, then every triangle in G is a face.

Exercise 4.2.4 Construct a resolved tangency graph of a square tiling of a rect-

angle, which contains a quadrilateral with a further node in its interior.
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