List of Figures
![]() |
Figure 1:
Range of various approximation tools (“UR” stands for ultra-relativistic). NR is mostly limited by resolution issues and therefore by possible different scales in the problem. |
![]() |
Figure 2:
Illustration of two hypersurfaces of a foliation . Lapse and shift are defined
by the relation of the timelike unit normal field and the basis vector associated with the
coordinate . Note that and, hence, the shift vector is tangent to . |
![]() |
Figure 3:
-dimensional representation of head-on collisons for spinless BHs, with isometry group
(left), and non-head-on collisons for BHs spinning in the orbital plane, with isometry
group (right). Image reproduced with permission from [841], copyright by APS. |
![]() |
Figure 4:
Illustration of mesh refinement for a BH binary with one spatial dimension suppressed. Around each BH (marked by the spherical AH), two nested boxes are visible. These are immersed within one large, common grid or refinement level. |
![]() |
Figure 5:
Illustration of singularity excision. The small circles represent vertices of a numerical grid on a two-dimensional cross section of the computational domain containing the spacetime singularity, in this case at the origin. A finite region around the singularity but within the event horizon (large circle) is excluded from the numerical evolution (white circles). Gray circles represent the excision boundary where function values can be obtained through regular evolution in time using sideways derivative operators as appropriate (e.g., [630]) or regular update with spectral methods (e.g., [677, 678]), or through extrapolation (e.g., [703, 723]). The regular evolution of exterior grid points (black circles) is performed with standard techniques using information also on the excision boundary. |
![]() |
Figure 6:
Illustration of the conjectured mass-scaling relation (172*). The data refer to three separate one-parameter variations of the pulse shape (171*). The constants and are chosen to
normalize the ranges of the abscissa and place the data point corresponding to the smallest BH in
each family at the origin. Image reproduced with permission from [212], copyright by APS. |
![]() |
Figure 7:
Left panel: Embedding diagram of the AH of the perturbed black string at different stages of the evolution. The light (dark) lines denote the first (last) time from the evolution segment shown in the corresponding panel. Right panel: Dimensionless Kretschmann scalar at the centre of
mass of a binary BH system as a function of the (areal) coordinate separation between the two BHs
in a scattering, in units of . Images reproduced with permission from (left) [511]
and from (right) [587], copyright by APS. |
![]() |
Figure 8:
Snapshots of the rest-mass density in the collision of fluid balls with boost factor
(upper panels) and (lower panels) at the initial time, shortly after collision, at the time
corresponding to the formation of separate horizons in the case, and formation of a common
horizon (for ) and at late time in the dispersion ( ) or ringdown ( ) phase.
Image reproduced with permission from [288], copyright by APS. |
![]() |
Figure 9:
Instability against BH formation in AdS (left panel) and Minkowski enclosed in a cavity (right panel). In both panels, the horizontal axis represents the amplitude of the initial (spherically symmetric) scalar field perturbation. The vertical axis represents the size of the BH formed. Perturbations with the largest plotted amplitude collapse to form a BH. As the amplitude of the perturbation is decreased so does the size of the BH, which tends to zero at a first threshold amplitude. Below this energy, no BH is formed in the first generation collapse and the scalar perturbation scatters towards the boundary. But since the spacetime behaves like a cavity, the scalar perturbation is reflected off the boundary and re-collapses, forming now a BH during the second generation collapse. At smaller amplitudes a second, third, etc, threshold amplitudes are found. The left (right) panel shows ten (five) generations of collapse. Near the threshold amplitudes, critical behavior is observed. Images reproduced with permission from (left) [108] and from (right) [537], copyright by APS. |
![]() |
Figure 10:
(a) and (b): and modes of gravitational waveform (solid curve) from an unstable
six-dimensional BH with as a function of a retarded time defined by , where
is the coordinate distance from the center. Image reproduced with permission from [700], copyright
by APS. |
![]() |
Figure 11:
Evolution of a highly spinning BH ( ) during interaction with different
frequency GW packets, each with initial mass . Shown (in units where ) are the
mass, irreducible mass, and angular momentum of the BH as inferred from AH properties. Image
reproduced with permission from [289], copyright by APS. |
![]() |
Figure 12:
Massive scalar field (nonlinear) evolution of the spacetime of an initially non-rotating BH, with . Left panel: Evolution of a spherically symmetric scalar waveform,
measured at , with the initial BH mass. In addition to the numerical data (black
solid curve) we show a fit to the late-time tail (red dashed curve) with , in excellent agreement
with linearized analysis. Right panel: The dipole signal resulting from the evolution of an
massive scalar field around a non-rotating BH. The waveforms, extracted at different radii
exhibit pronounced beating patterns caused by interference of different overtones. The critical feature
is however, that these are extremely long-lived configurations. Image reproduced with permission
from [588], copyright by APS. |
![]() |
Figure 13:
BH trajectories in grazing collisions for and three values of the impact
parameter corresponding to the regime of prompt merger (solid, black curve), of delayed merger
(dashed, red curve), and scattering (dotted, blue curve). Note that for each case, the trajectory of
one BH is shown only; the other BH’s location is given by symmetry across the origin. |
![]() |
Figure 14:
Total energy radiated in GWs (left panel) and final dimensionless spin of the merged BH (right panel) as a function of impact parameter for the same grazing collisions with .
The vertical dashed (green) and dash-dotted (red) lines mark and , respectively. Image
reproduced with permission from [720], copyright by APS. |
![]() |
Figure 15:
Left panels: Scattering threshold (upper panel) and maximum radiated energy (lower panel) as a function of . Colored “triangle” symbols pointing up and down refer to the
aligned and antialigned cases, respectively. Black “circle” symbols represent the thresholds for the
nonspinning configurations. Right panel: Trajectory of one BH for a delayed merger configuration
with anti-aligned spins . The circles represent the BH location at equidistant intervals
corresponding to the vertical lines in the inset that shows the equatorial circumference
of the BH’s AH as a function of time. |
![]() |
Figure 16:
The (red) plus and (blue) circle symbols mark scattering and merging BH configurations, respectively, in the plane of impact parameter and collision speed, for spacetime
dimensions. |
![]() |
Figure 17:
Energy fluxes for head-on collisions of two BHs in spacetime dimensions,
obtained with two different codes, HD-Lean [841, 797] (solid black line) and SacraND [820, 587]
(red dashed line). The BHs start off at an initial coordinate separation . Image adapted
from [796]. |
![]() |
Figure 18:
Trajectories of BHs immersed in a scalar field bubble of different amplitudes. The BH binary consists of initially non-spinning, equal-mass BHs in quasi-circular orbit, initially separated by , where is the mass of the binary system. The scalar field bubble
surrounding the binary has a radius and thickness . Panels
correspond to and a zero potential amplitude . Panel corresponds
to . Image reproduced with permission from [410], copyright by IOP. All
rights reserved. |
![]() |
Figure 19:
Numerical results for a BH binary inspiralling in a scalar-field gradient .
Left panel: dependence of the various components of the scalar radiation on
the extraction radius (top to bottom: to in equidistant steps). The dashed line
corresponds instead to at the largest extraction radius. This is the dominant
mode and corresponds to the fixed-gradient boundary condition, along the -direction, at large
distances. Right panel: time-derivative of the scalar field at the largest and smallest extraction radii,
rescaled by radius and shifted in time. Notice how the waveforms show a clean and typical merger
pattern, and that they overlap showing that the field scales to good approximation as . Image
reproduced with permission from [92], copyright by APS. |
![]() |
Figure 20:
The dominant quadrupolar component of the gravitational scalar for an equal-mass,
non-spinning NS binary with individual baryon masses of . The solid (black) curve refers
to GR, and the dashed (red) curve to a scalar-tensor theory with . Image
reproduced with permission from [73], copyright by APS. |
![]() |
Figure 21:
Left panel: Collision of two shock waves in AdS5. The energy density is represented
as a function of an (advanced) time coordinate and a longitudinal coordinate . defines
the amplitude of the waves. Right panel: Evolution of the scalar field in an unstable RN-AdS BH.
is a radial coordinate and the AdS boundary is at . Due to the instability of the BH, the
scalar density grows exponentially for . Then, the scalar density approaches some static
function. Images reproduced with permission from (left) [207], copyright by APS and (right) [562],
copyright by SISSA. |
![]() |
Figure 22:
Left: Elementary cells for the 8-BH configuration, projected to . The marginal
surface corresponding to the BH at infinity encompasses the whole configuration. Note that the 8
cubical lattice cells are isometric after the conformal rescaling. Right: Several measures of scaling in
the eight-BH universe, as functions of proper time , plotted against a possible identification of the
corresponding FLRW model (see Ref. [86] for details). All the quantities have been renormalized to
their respective values at . Images reproduced with permission from [86], copyright by IOP.
All rights reserved. |



. Lapse
and shift
are defined
by the relation of the timelike unit normal field
and the basis vector
associated with the
coordinate
. Note that
and, hence, the shift vector
is tangent to
.
-dimensional representation of head-on collisons for spinless BHs, with isometry group
(left), and non-head-on collisons for BHs spinning in the orbital plane, with isometry
group
(right). Image reproduced with permission from 


and
are chosen to
normalize the ranges of the abscissa and place the data point corresponding to the smallest BH in
each family at the origin. Image reproduced with permission from 
at the centre of
mass of a binary BH system as a function of the (areal) coordinate separation between the two BHs
in a
scattering, in units of
. Images reproduced with permission from (left) 
(upper panels) and
(lower panels) at the initial time, shortly after collision, at the time
corresponding to the formation of separate horizons in the
case, and formation of a common
horizon (for
) and at late time in the dispersion (
) or ringdown (
) phase.
Image reproduced with permission from 

and
modes of gravitational waveform (solid curve) from an unstable
six-dimensional BH with
as a function of a retarded time defined by
, where
is the coordinate distance from the center. Image reproduced with permission from 
) during interaction with different
frequency GW packets, each with initial mass
. Shown (in units where
) are the
mass, irreducible mass, and angular momentum of the BH as inferred from AH properties. Image
reproduced with permission from 
.
scalar waveform,
measured at
, with
the initial BH mass. In addition to the numerical data (black
solid curve) we show a fit to the late-time tail (red dashed curve) with
, in excellent agreement
with linearized analysis.
massive scalar field around a non-rotating BH. The waveforms, extracted at different radii
exhibit pronounced beating patterns caused by interference of different overtones. The critical feature
is however, that these are extremely long-lived configurations. Image reproduced with permission
from 
and three values of the impact
parameter corresponding to the regime of prompt merger (solid, black curve), of delayed merger
(dashed, red curve), and scattering (dotted, blue curve). Note that for each case, the trajectory of
one BH is shown only; the other BH’s location is given by symmetry across the origin.
for the same grazing collisions with
.
The vertical dashed (green) and dash-dotted (red) lines mark
and
, respectively. Image
reproduced with permission from 
. Colored “triangle” symbols pointing up and down refer to the
aligned and antialigned cases, respectively. Black “circle” symbols represent the thresholds for the
nonspinning configurations.
. The circles represent the BH location at equidistant intervals
corresponding to the vertical lines in the inset that shows the equatorial circumference
of the BH’s AH as a function of time.
plane of impact parameter and collision speed, for
spacetime
dimensions.
spacetime dimensions,
obtained with two different codes,
. Image adapted
from 
, where
is the mass of the binary system. The scalar field bubble
surrounding the binary has a radius
and thickness
. Panels
correspond to
and a zero potential amplitude
. Panel
corresponds
to
. Image reproduced with permission from 
.
on
the extraction radius (top to bottom:
to
in equidistant steps). The dashed line
corresponds instead to
at the largest extraction radius. This is the dominant
mode and corresponds to the fixed-gradient boundary condition, along the
-direction, at large
distances.
. Image
reproduced with permission from 
scalar for an equal-mass,
non-spinning NS binary with individual baryon masses of
. The solid (black) curve refers
to GR, and the dashed (red) curve to a scalar-tensor theory with
. Image
reproduced with permission from 
is represented
as a function of an (advanced) time coordinate
and a longitudinal coordinate
.
defines
the amplitude of the waves.
is a radial coordinate and the AdS boundary is at
. Due to the instability of the BH, the
scalar density grows exponentially for
. Then, the scalar density approaches some static
function. Images reproduced with permission from (left) 
. The marginal
surface corresponding to the BH at infinity encompasses the whole configuration. Note that the 8
cubical lattice cells are isometric after the conformal rescaling.
, plotted against a possible identification of the
corresponding FLRW model (see Ref.
. Images reproduced with permission from