Geometry & Topology, Vol. 9 (2005) Paper no. 50, pages 2193--2226.

Constructions contrôlées de champs de Reeb et applications

Vincent Colin, Ko Honda


Abstract. On every compact, orientable, irreducible 3-manifold V which is toroidal or has torus boundary components we construct a contact 1-form whose Reeb vector field R does not have any contractible periodic orbits and is tangent to the boundary. Moreover, if bdry V is nonempty, then the Reeb vector field R is transverse to a taut foliation. By appealing to results of Hofer, Wysocki, and Zehnder, we show that, under certain conditions, the 3-manifold obtained by Dehn filling along bdry V is irreducible and different from the 3-sphere.

Résumé. On construit, sur toute variete V de dimension trois orientable, compacte, irreductible, bordee par des tores ou toroidale, une forme de contact dont le champ de Reeb R est sans orbite periodique contractible et tangent au bord. De plus, si le bord de V est non vide, le champ R est transversal a un feuilletage tendu. En utilisant des resultats de Hofer, Wysocki et Zehnder, on obtient sous certaines conditions que la variete obtenue par obturation de Dehn le long du bord de V est irreductible et differente de la sphere S^3.

Keywords. Reeb vector field, contact structure, taut foliation

AMS subject classification. Primary: 53D35. Secondary: 53C15.

E-print: arXiv:math.GT/0411640

DOI: 10.2140/gt.2005.9.2193

Submitted to GT on 25 November 2004. (Revised 4 September 2005.) Paper accepted 26 November 2005. Paper published 1 December 2005.

Notes on file formats

Vincent Colin, Ko Honda
Universite de Nantes, UMR 6629 du CNRS, 44322 Nantes, France
and
University of Southern California, Los Angeles, CA 90089, USA
Email: Vincent.Colin@math.univ-nantes.fr, khonda@math.usc.edu
URL: http://rcf.usc.edu/~khonda

GT home page

EMIS/ELibM Electronic Journals

Outdated Archival Version

These pages are not updated anymore. They reflect the state of 21 Apr 2006. For the current production of this journal, please refer to http://msp.warwick.ac.uk/.