PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE (BEOGRAD) (N.S.) Vol. 60(74), pp. 65--74 (1996) |
|
Caracterisation de la stabilité d'un problème de minimisation associé à une function de perturbation particuliereD. MentaguiFacultés Universitaires, Notre-Dame de La Paix, 8 Rempart de la Vièrge, 5000-Namur, BelgiqueAbstract: We present necessary and sufficient conditions for the lower semicontinuity and exactness of the infinimal convolution $f^*\nabla g^*$, where $f^*$ and $g^*$ denote respectively the conjugate of two convex functions $f$ and $g$. Our goal is to characterize the stability of a minimization problem: $\inf_x\varphi(x,0)$ where $\varphi$ is given by $\varphi(x,u)=f(x)+g(x-u)$. Classification (MSC2000): 49A50; 54B20 Full text of the article:
Electronic fulltext finalized on: 1 Nov 2001. This page was last modified: 16 Nov 2001.
© 2001 Mathematical Institute of the Serbian Academy of Science and Arts
|