Department of Mathematics

Total positivity and cluster algebras

Please note that this page is old.
Check in the VVZ for a current information.
Organizer Prof. Karin Baur
Place HG G 19.2
  NOTE: There is no seminar on December 7!
Time Tuesday, 15.15-17.00
Prof. Karin Baur
This is NOT a regular Bachelor/Masters Seminar!!!

It is a Reading group in the area of cluster algebras and total positivity.

  • [BG]: M. Barot, C. Geiss, Tubular cluster algebras I: categorification, arxiv
  • [BM]: K. Baur, R. J. Marsh, Frieze pattern for punctured discs, J. Alg. Comb. 30, Issue 3, 2009, 349-379.
  • [CC]: P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 Issue 3 (2006), 595-616.
  • [DiFKn]: P. Di Francesco, R. Kedem, Noncommutative integrability, paths and quasi-determinants, arxiv
  • [DiFKq]: P. Di Francesco, R. Kedem, Q-systems, heaps, paths and cluster positivity, arxiv
  • [F]: S. Fomin, Total positivity and cluster algebras, arxiv
  • [FG06]: V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmueller theory, Publ. Math. Inst. Hautes Etudes Sci. (2006), no. 103, 1–211.
  • [FG07]: V. Fock, A. B. Goncharov, Dual Teichmueller and lamination spaces, Handbook of Teichmueller theory, vol. I, 647–684, Eur. Math. Soc., Zurich, 2007.
  • [FST]: S. Fomin, M. Shapiro, D. Thurston, Cluster algebra and triagulated surfaces Part I: cluster complexes, Acta Math. 201 (2008). 83-146, pdf.
  • [FT]: S. Fomin, D. Thurston, Cluster algebras and triangulated surfaces part II: lambda lengths, preprint
  • [FZ1]: S. Fomin, A. Zelevinsky: Cluster algebras I: foundation, J. Am. Math. Soc. Vol. 15 Num. 2 (2001), 497-529.
  • [FZ2]: S. Fomin, A. Zelevinsky: The Laurent Phenomenon, Adv. in App. Math. 28 (2002), 119-144.
  • [GSV03]: M. Gekhtman, M. Shapiro, A. Vainstein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), 899–934.
  • [GSV05]: M. Gekhtman, M. Shapiro, A. Vainstein, Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291–311.
  • [KS]: B. Keller, S. Scherotzke, Linear recurrence relations for cluster variables of affine quivers, arxiv
  • [L]: B. Leclerc, Cluster algebras and representation theory, arxiv
  • [MGOT]: S. Morier-Genoud, V. Ovsienko, S. Tabachnikov, 2-frieze patterns and the space of polygons, arxiv
  • [MSW]: G. Musiker, R. Schiffler, L. Williams, Positivity for cluster algebras from surfaces, arxiv
  • [N]: Nakajima, Quiver varieties and cluster algebras, arxiv
  • [P]: R. C. Penner, Lambda lengths, University of Aarhus, lecture notes, August 2006, pdf.
Scheduling Plan of talks

Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne graphische Elemente dargestellt. Die Funktionalität der Website ist aber trotzdem gewährleistet. Wenn Sie diese Website regelmässig benutzen, empfehlen wir Ihnen, auf Ihrem Computer einen aktuellen Browser zu installieren. Weitere Informationen finden Sie auf
folgender Seite.

Important Note:
The content in this site is accessible to any browser or Internet device, however, some graphics will display correctly only in the newer versions of Netscape. To get the most out of our site we suggest you upgrade to a newer browser.
More information

© 2016 Mathematics Department | Imprint | Disclaimer | 30 November 2010