 |
|
Amelino-Camelia, G. and Stachel, J., 2009, “Measurement of the space-time interval between two
events using the retarded and advanced times of each event with respect to a time-like world-line”,
Gen. Relativ. Gravit., 41, 1107–1124. [ DOI], [ ADS], [ arXiv:0710.5608 [gr-qc]].
|
 |
|
Anderson, I.M., Fels, M.E. and Torre, C.G., 2000, “Group Invariant Solutions Without
Transversality”, Commun. Math. Phys., 212, 653–686. [ DOI], [ ADS], [ arXiv:math-ph/9910015].
|
 |
|
Ashtekar, A., 1987, Asymptotic Quantization, Bibliopolis, Napoli, Italy.
|
 |
|
Ashtekar, A., 2010, “The Issue of the Beginning in Quantum Cosmology”, in Einstein and the
Changing Worldviews of Physics, Proceedings of the 7th Conference on the History of General
Relativity, La Orotava, Tenerife, March 2005, (Eds.) Lehner, C., Renn, J., Schemmel, M., Einstein
Studies, 12, pp. 347–363, Birkhäuser, Boston; Basel.
|
 |
|
Ashtekar, A. and Pierri, M., 1996, “Probing quantum gravity through exactly soluble
midi-superspaces I”, J. Math. Phys., 37, 6250–6270. [ DOI], [ ADS], [ arXiv:gr-qc/9606085].
|
 |
|
Ashtekar, A., Tate, R. and Uggla, C., 1993a, “Minisuperspaces: Observables and Quantization”, Int.
J. Mod. Phys. D, 2, 15–50. [ DOI], [ ADS], [ arXiv:gr-qc/9302027].
|
 |
|
Ashtekar, A., Tate, R.S. and Uggla, C., 1993b, “Minisuperspaces: Symmetries and Quantization”,
in Directions in General Relativity, Vol. 1, Proceedings of the 1993 International Symposium,
Maryland: Papers in honor of Charles Misner, (Eds.) Hu, B.L., Ryan Jr, M.P., Vishveswara, C.V.,
pp. 29–42, Cambridge University Press, Cambridge; New York.
|
 |
|
Ashtekar, A., Bičák, J. and Schmidt, B.G., 1997a, “Asymptotic structure of symmetry-reduced
general relativity”, Phys. Rev. D, 55, 669–686. [ DOI], [ ADS], [ arXiv:gr-qc/9608042].
|
 |
|
Ashtekar, A., Bičák, J. and Schmidt, B.G., 1997b, “Behavior of Einstein-Rosen waves at null
infinity”, Phys. Rev. D, 55, 687–694. [ DOI], [ ADS], [ arXiv:gr-qc/9608041].
|
 |
|
Belot, G. and Earman, J., 2001, “Pre-Socratic quantum gravity”, in Physics Meets Philosophy at
the Planck Scale: Contemporary Theories in Quantum Gravity, (Eds.) Callender, C., Huggett, N.,
chap. 10, pp. 213–255, Cambridge University Press, Cambridge; New York. [ DOI].
|
 |
|
Bergmann, P.G., 1957, “Topics in the Theory of General Relativity”, in Lectures in Theoretical
Physics: Brandeis Summer Institute, 1957, Brandeis Summer School 1957, pp. 1–44, W.A.
Benjamin, New York.
|
 |
|
Bergmann, P.G. and Smith, G.J., 1982, “Measurability Analysis for the Linearized Gravitational
Field”, Gen. Relativ. Gravit., 14, 1131–1166. [ DOI], [ ADS].
|
 |
|
Bičák, J., 2000, “Exact radiative spacetimes: some recent developments”, Ann. Phys. (Leipzig),
9, 207–216. [ DOI], [ ADS], [ gr-qc/0004031].
|
 |
|
Bohr, N. and Rosenfeld, L., 1933, “Zur Frage der Messbarkeit der elektromagnetischen Feldgrössen”,
Mat.-Fys. Medd. K. Dan. Vid. Selsk., 12(8), 3–65. Online version (accessed 15 May 2013):
http://www.sdu.dk/en/bibliotek/materiale+efter+type/hostede+ressourcer/matfys.
|
 |
|
Bohr, N. and Rosenfeld, L., 1979, “On the Question of the Measurability of Electromagnetic Field
Quantities”, in Selected Papers of Léon Rosenfeld, (Eds.) Cohen, R.S., Stachel, J., Boston Studies
in the Philosophy of Science, 21, pp. 357–400, D. Reidel, Dordrecht; Boston. [ DOI].
|
 |
|
Bradonjić, K. and Stachel, J., 2012, “Unimodular conformal and projective relativity”, Europhys.
Lett., 97, 10001. [ DOI], [ ADS], [ arXiv:1110.2159 [gr-qc]].
|
 |
|
Bruhat, Y., 1962, “The Cauchy Problem”, in Gravitation: An Introduction to Current Research,
(Ed.) Witten, L., pp. 130–168, Wiley, New York; London.
|
 |
|
Darmois, G., 1927, Les équations de la gravitation einsteinienne, Mémorial des Sciences
Mathématiques, 25, Gauthier-Villars, Paris. Online version (accessed 14 May 2013):
http://www.numdam.org/item?id=MSM_1927__25__1_0.
|
 |
|
DeWitt, B.S., 2003, The Global Approach to Quantum Field Theory, 2 vols., International Series of
Monographs on Physics, 114, Clarendon Press, Oxford; New York.
|
 |
|
Dorato, M., 2000, “Substantivalism, Relationism, and Structural Spacetime Realism”, Found. Phys.,
30, 1605–1628. [ DOI].
|
 |
|
Dosch, H.G., Müller, V.F. and Sieroka, N., 2005, Quantum Field Theory in a Semiotic Perspective,
Math.-Phys. Kl. Heidelberger Akad. Wiss., 17, Springer, Berlin; New York. [ Google Books]. Online
version (accessed 16 November 2013):
http://philsci-archive.pitt.edu/1624/.
|
 |
|
Doughty, N.A., 1990, Lagrangian Interaction: An Introduction to Relativistic Symmetry in
Electrodynamics and Gravitation, Addison-Wesley, Reading, MA.
|
 |
|
Earman, J., 1989, World Enough and Space-Time: Absolute Versus Relational Theories of Space and
Time, MIT Press Classics, MIT Press, Cambridge, MA; London.
|
 |
|
Earman, J., 2004, “Laws, Symmetry, and Symmetry Breaking: Invariance, Conservation Principles,
and Objectivity”, Philos. Sci., 71, 1227–1241. [ DOI].
|
 |
|
Earman, J., 2006, “Two Challenges to the Requirement of Substantive General Covariance”,
Synthese, 148, 443–468. [ DOI].
|
 |
|
Earman, J. and Norton, J.D., 1987, “What Price Spacetime Substantivalism? The Hole Story”, Brit.
J. Phil. Sci., 38, 515–525. [ DOI].
|
 |
|
Ehlers, J., 1973, “The Nature and Structure of Spacetime”, in The Physicist’s Conception of Nature,
Symposium on the Development of the Physicist’s Conception of Nature in the Twentieth Century,
held in Trieste, Italy, 18 – 25 September 1972, (Ed.) Mehra, J., pp. 71–91, D. Reidel, Dordrecht;
Boston. [ Google Books].
|
 |
|
Einstein, A., 1905, “Zur Elektrodynamik bewegter Körper”, Ann. Phys. (Leipzig), 17, 891–921.
[ DOI]. Online version (accessed 15 May 2013):
http://echo.mpiwg-berlin.mpg.de/MPIWG:FDQUK2HX.
|
 |
|
Einstein, A., 1916, “Die Grundlage der allgemeinen Relativitätstheorie”, Ann. Phys. (Leipzig), 49,
769–822. [ DOI]. Online version (accessed 15 May 2013):
http://echo.mpiwg-berlin.mpg.de/MPIWG:ACAKHYZX.
|
 |
|
Einstein, A., 1918, “Prinzipielles zur allgemeinen Relativitätstheorie”, Ann. Phys. (Leipzig), 55,
241–244. [ DOI]. Online version (accessed 15 May 2013):
http://echo.mpiwg-berlin.mpg.de/MPIWG:T40G38NP.
|
 |
|
Einstein, A., 1931, “Einstein Says ‘Several’ Here Understand Relativity Theory”, New York Times,
(March 5).
|
 |
|
Einstein, A., 1952, Relativity: The Special and the General Theory, Crown, New York, 15th edn.
[ Google Books].
|
 |
|
Einstein, A., 1955, The Meaning of Relativity, Stafford Little Lectures, 1921, Princeton University
Press, Princeton, NJ, 5th edn. [ Google Books].
|
 |
|
Einstein, A., 1956, “Autobiographische Skizze”, in Helle Zeit–Dunkle Zeit: In memoriam Albert
Einstein, (Ed.) Seelig, C., pp. 9–17, Europa Verlag, Zürich; Stuttgart.
|
 |
|
Engler, F.O. and Renn, J., 2013, “Hume, Einstein und Schlick über die Objektivität der
Wissenschaft”, in Moritz Schlick – Die Rostocker Jahre und ihr Einfluss auf die Wiener Zeit, 3.
Internationales Rostocker Moritz-Schlick-Symposium, November 2011, (Eds.) Engler, F.O., Iven,
M., Schlickiana, 6, pp. 123–156, Leipziger Universitätsverlag, Leipzig.
|
 |
|
Fatibene, L. and Francaviglia, M., 2003, Natural and Gauge Natural Formalism for Classical Field
Theories: A Geometric Perspective including Spinors and Gauge Theories, Kluwer Academic,
Dordrecht; Norwell, MA.
|
 |
|
Fatibene, L., Francaviglia, M. and Raiteri, M., 2001, “Gauge natural field theories and applications
to conservation laws”, in Differential geometry and its applications, 8th International conference on
Differential Geometry and its Applications, Opava, Czech Republic, August 27 – 31, 2001, (Eds.)
Kowalski, O., Krupka, D., Slovák, J., 3, pp. 401–413, Silesian University, Opava, Czech Republic.
URL (accessed 15 May 2013):
http://conferences.math.slu.cz/8icdga/proceedings.html.
|
 |
|
Fine, A. and Leplin, J. (Eds.), 1989, PSA 1988, Volume Two, Proceedings of the 1988 Biennial
Meeting of the Philosophy of Science Association, held in Evanston, IL, USA, Philosophy of Science
Association, East Lansing, MI.
|
 |
|
French, S. and Ladyman, J., 2003, “Remodelling Structural Realism: Quantum Physics and the
Metaphysics of Structure”, Synthese, 136, 31–56. [ DOI].
|
 |
|
Göckeler, M. and Schücker, T., 1987, Differential geometry, gauge theories, and gravity, Cambridge
Monographs on Mathematical Physics, Cambridge University Press, Cambridge; New York. [ Google
Books].
|
 |
|
Goenner, H., 1996, Einführung in die spezielle und allgemeine Relativitätstheorie, Spektrum,
Heidelberg; Oxford.
|
 |
|
Greene, B., 2004, The Fabric of the Cosmos: Space, Time, and the Texture of Reality, Alfred A.
Knopf, New York.
|
 |
|
Hall, G.S., 2004, Symmetries and Curvature Structure in General Relativity, World Scientific Lecture
Notes in Physics, 46, World Scientific, Singapore; River Edge, NJ. [ Google Books].
|
 |
|
Hawking, S.W. and Ellis, G.F.R., 1973, The Large Scale Structure of Space-Time, Cambridge
Monographs on Mathematical Physics, Cambridge University Press, Cambridge. [ Google Books].
|
 |
|
Healey, R., 2001, “On the Reality of Gauge Potentials”, Philos. Sci., 68, 432–455. [ DOI], [ PhilSci:328].
|
 |
|
Hehl, F.W., McCrea, J.D., Mielke, E.W. and Ne’Eman, Y., 1995, “Metric-affine gauge theory of
gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance”,
Phys. Rep., 258, 1–171. [ DOI], [ ADS], [ arXiv:gr-qc/9402012].
|
 |
|
Henry, S., 2006, “Metaphysical Disputation on Haecceitism and the Principle of the Identity of
Indiscernibles”, Ex Nihilo, 6, 19–34. Online version (accessed 7 May 2013):
http://hdl.handle.net/2152/13598.
|
 |
|
Hermann, R., 1973, Geometry, Physics and Systems, Pure and Applied Mathematics, 18, Dekker,
New York.
|
 |
|
Hilbert, D., 1917, “Die Grundlagen der Physik (Zweite Mitteilung.)”, Nachr. Koenigl. Gesellsch.
Wiss. Goettingen, Math.-Phys. Kl., 1917, 53–76. Online version (accessed 14 January 2014):
http://www.digizeitschriften.de/dms/resolveppn/?PPN=GDZPPN002504561.
|
 |
|
Hoefer, C., 1996, “The metaphysics of space-time substantivalism”, J. Philos., 93, 5–27. [ DOI].
|
 |
|
Iftime, M. and Stachel, J., 2006, “The hole argument for covariant theories”, Gen. Relativ. Gravit.,
38, 1241–1252. [ DOI], [ ADS], [ arXiv:gr-qc/0512021].
|
 |
|
Illy, J. (Ed.), 2006, Albert Meets America: How Journalists Treated Genius During Einstein’s 1921
Travels, Johns Hopkins University Press, Baltimore.
|
 |
|
Isenberg, J.A. and Marsden, J.E., 1982, “A slice theorem for the space of solutions of Einstein’s
equations”, Phys. Rep., 89, 179–222. [ DOI], [ ADS].
|
 |
|
Isham, C.J., 1999, Modern Differential Geometry for Physicists, World Scientific Lecture Notes in
Physics, 61, World Scientific, Singapore; River Edge, NJ, 2nd edn. [ Google Books].
|
 |
|
Jammer, M., 1954, Concepts of Space: The History of Theories of Space in Physics, Harvard
University Press, Cambridge, MA. [ Google Books].
|
 |
|
Janssen, M., 2007, “What Did Einstein Know and When Did He Know It? A Besso Memo
Dated August 1913”, in The Genesis of General Relativity, Vol. 2: Einstein’s Zurich Notebook:
Commentary and Essays, (Ed.) Renn, J., Boston Studies in the Philosophy of Science, 250, pp.
785–838, Springer, Dordrecht. [ DOI].
|
 |
|
Kobayashi, S., 1972, Transformation Groups in Differential Geometry, Springer, Berlin; New York.
[ DOI], [ Google Books].
|
 |
|
Komar, A., 1958, “Construction of a Complete Set of Observables in the General Theory of
Relativity”, Phys. Rev., 111, 1182–1187. [ DOI], [ ADS].
|
 |
|
Komar, A., 1973, “The General Relativistic Quantization Program”, in Contemporary Research in
the Foundations and Philosophy of Quantum Theory, Proceedings of a conference held at the
University of Western Ontario, London, Canada, (Ed.) Hooker, C.A., The Western Ontario Series
in Philosophy of Science, 2, pp. 305–327, D. Reidel, Dordrecht; Boston. [ DOI].
|
 |
|
Kouletsis, I., Hájíček, P. and Bičák, J., 2003, “Gauge-invariant Hamiltonian dynamics of
cylindrical gravitational waves”, Phys. Rev. D, 68, 104013. [ DOI], [ ADS], [ arXiv:gr-qc/0308032].
|
 |
|
Kox, A.J., Klein, M.J. and Schulmann, R. (Eds.), 1996, The Collected Papers of Albert Einstein, Vol.
6: The Berlin Years: Writings, 1914–1917, Princeton University Press, Princeton, NJ.
|
 |
|
Kretschmann, E., 1915a, “Über die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme
beliebiger Relativitätstheorien (I)”, Ann. Phys. (Leipzig), 48, 907–942. [ DOI].
|
 |
|
Kretschmann, E., 1915b, “Über die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme
beliebiger Relativitätstheorien (II)”, Ann. Phys. (Leipzig), 48, 943–982. [ DOI].
|
 |
|
Kretschmann, E., 1917, “Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue
und seine ursprüngliche Relativitätstheorie”, Ann. Phys. (Leipzig), 53, 575–614. [ DOI].
|
 |
|
Ladyman, J., 1998, “What is Structural Realism?”, Stud. Hist. Philos. Sci., 29, 409–424. [ DOI].
|
 |
|
Lanczos, C., 1970, Space Through The Ages: The evolution of geometrical ideas from Pythagoras to
Hilbert and Einstein, Academic Press, London; New York.
|
 |
|
Lawvere, F.W. and Schanuel, S.H., 1997, Conceptual Mathematics: A first introduction to categories,
Cambridge University Press, Cambridge; New York. [ Google Books].
|
 |
|
Lichnerowicz, A., 1955, Théories relativistes de la gravitation et de l’électromagnétisme: Relativité
générale et théories unitaires, Masson, Paris.
|
 |
|
Lichnerowicz, A., 1992, “Mathematics and General Relativity: A Recollection”, in Studies in the
History of General Relativity, Proceedings of the 2nd Conference on the History of General
Relativity, Luminy, Marseille, France, 6 – 9 September 1988, (Eds.) Eisenstaedt, J., Kox, A.J.,
Einstein Studies, 3, pp. 103–108, Birkhäuser, Boston; Basel. [ Google Books].
|
 |
|
Loemker, L.E. (Ed.), 1969, Gottfried Wilhelm Leibniz: Philosophical Papers and Letters, D. Reidel,
Dordrecht. [ Google Books].
|
 |
|
Lusanna, L. and Pauri, M., 2006, “Explaining Leibniz equivalence as difference of non-inertial
appearances: Dis-solution of the Hole Argument and physical individuation of point-events”, Stud.
Hist. Phil. Mod. Phys., 37, 692–725. [ DOI], [ PhilSci:2714].
|
 |
|
Lyre, H., 1999, “Gauges, Holes, and their ‘Connections”’, Fifth International Conference on the
History and Foundations of General Relativity, July 8 – 11, 1999, University of Notre Dame, Notre
Dame, Indiana, conference paper. [ ADS], [ arXiv:gr-qc/9904036].
|
 |
|
Mach, E., 1986, Principles of the Theory of Heat: Historically and Critically Elucidated, Vienna
Circle Collection, 17, D. Reidel, Dordrecht; Boston. [ DOI]. This translation from the 2nd edition,
1900.
|
 |
|
Mach, E., 1988, Die Mechanik in
ihrer Entwicklung: Historisch-kritisch dargestellt, Philosophiehistorische Texte, Akademie-Verlag,
Berlin.
|
 |
|
Matteucci, P., 2003, “Einstein-Dirac theory on gauge-natural bundles”, Rep. Math. Phys., 52,
115–139. [ DOI], [ ADS], [ arXiv:gr-qc/0201079].
|
 |
|
Micanek, R.J. and Hartle, J.B., 1996, “Nearly instantaneous alternatives in quantum mechanics”,
Phys. Rev. A, 54, 3795–3800. [ DOI], [ ADS], [ arXiv:quant-ph/9602023].
|
 |
|
Michor, P.W., 2008, Topics in Differential Geometry, Graduate Studies in Mathematics, 93, American
Mathematical Society, Providence, RI.
|
 |
|
Neumann, P.M., Stoy, G.A. and Thompson, E.C., 1994, Groups and Geometry, Oxford University
Press, Oxford; New York. [ Google Books].
|
 |
|
Nicolai, H. and Peeters, K., 2007, “Loop and Spin Foam Quantum Gravity: A Brief Guide for
Beginners”, in Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas,
(Eds.) Stamatescu, I.-O., Seiler, E., Lecture Notes in Physics, 721, pp. 151–184, Springer, Berlin;
New York. [ DOI], [ ADS], [ hep-th/0601129].
|
 |
|
Nijenhuis, A., 1994, “Book Review: ‘Natural operations in differential geometry’, by Ivan Kolář,
Peter W. Michor, and Jan Slovák, Springer-Verlag, Berlin et al., 1993”, Bull. Am. Math. Soc.,
31, 108–112. [ DOI].
|
 |
|
Norton, J.D., 1984, “How Einstein found his field equations: 1912–1915”, Hist. Stud. Phys. Sci., 14,
253–316. [ DOI].
|
 |
|
Norton, J.D., 1993, “General covariance and the foundations of general relativity: eight decades of
dispute”, Rep. Prog. Phys., 56, 791–858. [ DOI].
|
 |
|
Norton, J.D., 2011, “The Hole Argument”, in The Stanford Encyclopedia of Philosophy, (Ed.) Zalta,
E.N., Stanford University, Stanford, CA. URL (accessed 16 November 2013):
http://plato.stanford.edu/archives/fall2011/entries/spacetime-holearg/.
|
 |
|
Oeckl, R., 2008, “General boundary quantum field theory: Foundations and probability
interpretation”, Adv. Theor. Math. Phys., 12, 319–352. [ ADS], [ arXiv:hep-th/0509122].
|
 |
|
Oeckl, R., 2013, “A Positive Formalism for Quantum Theory in the General Boundary Formulation”,
Found. Phys., 43, 1206–1232. [ DOI], [ ADS], [ arXiv:1212.5571 [quant-ph]].
|
 |
|
Olver, P.J., 1995, Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge;
New York. [ Google Books].
|
 |
|
Pais, A., 1982, ‘Subtle is the Lord ...’: The Science and the Life of Albert Einstein, Oxford University
Press, Oxford; New York. [ Google Books].
|
 |
|
Penrose, R., 1963, “Asymptotic properties of fields and space-times”, Phys. Rev. Lett., 10, 66–68.
[ DOI], [ ADS].
|
 |
|
Pooley, O., 2000, “Spacetime Realism and Quantum Gravity”, conference paper. Online version
(accessed 15 May 2013):
http://users.ox.ac.uk/~ball0402/research/.
|
 |
|
Pooley, O., 2006, “Points, Particles, and Structural Realism”, in The Structural Foundations of
Quantum Gravity, (Eds.) Rickles, D., French, S., Saatsi, J., pp. 83–120, Clarendon Press, Oxford;
New York. [ PhilSci:2939].
|
 |
|
Pooley, O., 2013, “Substantivalist and Relationalist Approaches to Spacetime”, in The Oxford
Handbook of Philosophy of Physics, (Ed.) Batterman, R., Oxford Handbooks in Philosophy, Oxford
University Press, Oxford; New York. [ PhilSci:9055].
|
 |
|
Prugovečki, E., 1992, Quantum Geometry: A Framework for Quantum General Relativity,
Fundamental Theories of Physics, 48, Kluwer Academic, Dordrecht; Boston. [ DOI].
|
 |
|
Reisenberger, M.P. and Rovelli, C., 2002, “Spacetime states and covariant quantum theory”, Phys.
Rev. D, 65, 125016. [ DOI], [ arXiv:gr-qc/0111016].
|
 |
|
Renn, J. (Ed.), 2007, The Genesis of General Relativity, Vol. 1: Einsteins’s Zurich Notebook:
Introduction and Source, Boston Studies in the Philosophy of Science, 250, Springer, Dordrecht.
[ DOI].
|
 |
|
Renn, J. and Stachel, J., 2007, “Hilbert’s Foundations of Physics: From a Theory of Everything to
a Constituent of General Relativity”, in The Genesis of General Relativity, Vol. 4: Gravitation in
the Twilight of Classical Physics: The Promise of Mathematics, (Ed.) Renn, J., Boston Studies in
the Philosophy of Science, 250, pp. 1778–1895, Springer, Dordrecht. [ DOI].
|
 |
|
Rickles, D.P., 2005, “A new spin on the hole argument”, Stud. Hist. Phil. Mod. Phys., 36, 415–434.
[ DOI], [ PhilSci:1859].
|
 |
|
Rorty, R., 1967, “Relations, Internal and External”, in The Encylopedia of Philosophy, vol. 7, (Ed.)
Edwards, P., pp. 125–133, Macmillan, New York.
|
 |
|
Rovelli, C., 1991, “What is observable in classical and quantum gravity?”, Class. Quantum Grav., 8,
297–316. [ DOI].
|
 |
|
Rovelli, C., 2004, Quantum Gravity, Cambridge Monographs on Mathematical Physics, Cambridge
University Press, Cambridge; New York. [ Google Books].
|
 |
|
Rynasiewicz, R., 1999, “Kretschmann’s Analysis of Covariance and Relativity Principles”, in The
Expanding Worlds of General Relativity, Proceedings of the 4th Conference on the History of
General Relativity, Berlin 1995, (Eds.) Goenner, H., Renn, J., Ritter, J., Sauer, T., Einstein Studies,
7, pp. 431–462, Birkhäuser, Boston; Basel. [ Google Books].
|
 |
|
Sánchez-Rodríguez, I., 2008, “Geometrical Structures of Space-Time in General Relativity”, in
Geometry and Physics, XVI International Fall Workshop, Lisbon, Portugal, 5 – 8 September 2007,
(Eds.) Fernandes, R.L., Picken, R., AIP Conference Proceedings, 1023, pp. 202–206, American
Institute of Physics, Melville, NY. [ DOI], [ ADS], [ arXiv:0803.1929 [gr-qc]].
|
 |
|
Schichl, H., 1997, On the existence of slice theorems for moduli spaces on fiber bundles, Ph.D. thesis,
Universität Wien, Vienna. Online version (accessed 10 January 2014):
http://ubdata.univie.ac.at/AC01930824.
|
 |
|
Schouten, J.A., 1951, Tensor Analysis for Physicists, Clarendon Press, Oxford.
|
 |
|
Schouten, J.A., 1954, Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical
Applications, Die Grundlehren der Mathematischen Wissenschaften, X, Springer, Berlin;
Heidelberg, 2nd edn. [ DOI].
|
 |
|
Schulmann, R., Kox, A.J. and Janssen, M. (Eds.), 1998, The Collected Papers of Albert Einstein, Vol.
8 Bd. 2, The Berlin Years: Correspondence, 1914-1917, Princeton University Press, Princeton,
NJ.
|
 |
|
Sharpe, R.W., 1997, Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program,
Graduate Texts in Mathematics, 166, Springer, New York; Berlin. [ Google Books].
|
 |
|
Sklar, L., 1974, Space, Time, and Spacetime, University of California Press, Berkeley. [ Google Books].
|
 |
|
Stachel, J., 1966, “Cylindrical Gravitational News”, J. Math. Phys., 7, 1321–1331. [ DOI].
|
 |
|
Stachel, J., 1969, “Covariant Formulation of the Cauchy Problem in Generalized Electrodynamics
and General Relativity”, Acta Phys. Pol., 35, 689–709.
|
 |
|
Stachel, J., 1979, “The genesis of general relativity”, in Einstein Symposion Berlin, Aus Anlaß der
100. Wiederkehr seines Geburtstages 25. bis 30. März 1979, (Eds.) Nelkowski, H., Hermann, A.,
Poser, H., Schrader, R., Seiler, R., Lecture Notes in Physics, 100, pp. 428–442, Springer, Berlin;
New York. [ DOI], [ ADS]. Reprinted in Stachel, J., Einstein from ‘B’ to ‘Z’, Einstein Studies, vol. 9,
pp. 233–244, Birkhäuser, Boston; Basel.
|
 |
|
Stachel, J., 1980, “The anholonomic Cauchy problem in general relativity”, J. Math. Phys., 21,
1776–1782. [ DOI].
|
 |
|
Stachel, J., 1986, “What a Physicist Can Learn From the Discovery of General Relativity”, in
The Fourth Marcel Grossmann Meeting on recent developments in theoretical and experimental
general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at
the University of Rome ‘La Sapienza’, 17 – 21 June, 1985, (Ed.) Ruffini, R., pp. 1857–1862,
North-Holland; Elsevier, Amsterdam; New York.
|
 |
|
Stachel, J., 1987, “How Einstein discovered general relativity: A historical tale with some
contemporary morals”, in General Relativity and Gravitation, Proceedings of the 11th International
Conference on General Relativity and Gravitation, Stockholm, July 6 – 12, 1986, (Ed.) MacCallum,
M.A.H., pp. 200–208, Cambridge University Press, Cambridge; New York.
|
 |
|
Stachel, J., 1989, “Einstein’s Search for General Covariance 1912–1915”, in Einstein and the History
of General Relativity, Based on the proceedings of the 1986 Osgood Hill Conference, North
Andover, Massachusetts, 8 – 11 May, (Eds.) Howard, D., Stachel, J., Einstein Studies, 1, pp. 63–100,
Birkhäuser, Boston; Basel. [ ADS].
|
 |
|
Stachel, J., 1992, “The Early History of the Cauchy Problem in General Relativity, 1916-1937”, in
Studies in the History of General Relativity, Proceedings of the 2nd Conference on the History of
General Relativity, Luminy, Marseille, France, 6 – 9 September 1988, (Eds.) Eisenstaedt, J., Kox,
A.J., Einstein Studies, 3, pp. 407–418, Birkhäuser, Boston; Basel.
|
 |
|
Stachel, J., 1993, “The Meaning of General Covariance: The Hole Story”, in Philosophical Problems
of the Internal and External Worlds: Essays on the Philosophy of Adolf Grünbaum, (Eds.)
Earman, J., Janis, A.I., Massey, G.J., Rescher, N., Pittsburgh-Konstanz Series in the Philosophy
and History of Science, pp. 129–160, University of Pittsburgh Press / Universitätsverlag
Konstanz, Pittsburgh; Konstanz. [ Google Books]. Online version (accessed 25 Novemver 2013):
http://digital.library.pitt.edu/cgi-bin/t/text/text-idx?idno=31735062135235;view=toc;c=pittpress.
|
 |
|
Stachel, J., 1997, “Feynman Paths and Quantum Entanglement: Is There Any More to the Mystery?”,
in Potentiality, Entanglement and Passion-at-a-Distance: Quantum Mechanical Studies for Abner
Shimony, Vol. 2, (Eds.) Cohen, R.S., Horne, M., Stachel, J., Boston Studies in the Philosophy of
Science, 194, pp. 245–256, Kluwer Academic, Dordrecht; Boston. [ DOI].
|
 |
|
Stachel, J., 2002, “‘The Relations between Things’ versus ‘The Things Between Relations’: The
Deeper Meaning of the Hole Argument”, in Reading Natural Philosophy: Essays in the History and
Philosophy of Science and Mathematics, (Ed.) Malament, D., pp. 231–266, Open Court, Chicago;
LaSalle. [ Google Books].
|
 |
|
Stachel, J., 2003, “‘Critical Realism’: Wartofsky and Bhaskar”, in Constructivism and Practice:
Towards a Historical Epistemology, (Ed.) Gould, C.C., pp. 137–150, Rowman & Littlefield,
Lanham, MD; Oxford.
|
 |
|
Stachel, J., 2005, “Structural Realism and Contextual Individuality”, in Hilary Putnam, (Ed.)
Ben-Menahem, Y., Contemporary Philosophy in Focus, pp. 203–219, Cambridge University Press,
Cambridge; New York. [ Google Books].
|
 |
|
Stachel, J., 2006a, “Structure, Individuality, and Quantum Gravity”, in Structural Foundations of
Quantum Gravity, (Eds.) Rickles, D., French, S., Saatsi, J., pp. 53–82, Oxford University Press,
Oxford; New York.
|
 |
|
Stachel, J., 2006b, “Albert Einstein: A Man for the Millenium?”, in A Century of Relativity Physics:
XXVIII Spanish Relativity Meeting (ERE 2005), Oviedo, Asturias, Spain, 6 – 10 September 2005,
(Eds.) Mornas, L., Diaz Alonso, J., AIP Conference Proceedings, 841, pp. 195–227, American
Institute of Physics, Melville, NY. [ DOI].
|
 |
|
Stachel, J., 2007, “The First Two Acts”, in The Genesis of General Relativity, Vol. 2: Einstein’s
Zurich Notebook: Commentary and Essays, (Ed.) Renn, J., Boston Studies in the Philosophy of
Science, 250, pp. 81–111, Springer, Dordrecht. [ DOI].
|
 |
|
Stachel, J., 2009, “Prolegomena to any future Quantum Gravity”, in Approaches to Quantum Gravity:
Toward a New Understanding of Space, Time and Matter, (Ed.) Oriti, D., pp. 44–67, Cambridge
University Press, Cambridge; New York.
|
 |
|
Stachel, J., 2011, “Conformal and projective structures in general relativity”, Gen. Relativ. Gravit.,
43, 3399–3409. [ DOI], [ ADS].
|
 |
|
Stachel, J., 2014, “General Relativity and Differential Geometry: The Einstein Connection”,
in Beyond Einstein, Based upon the conference, Johannes Gutenberg University, Mainz
Germany, 22 – 26 September 2008, (Ed.) Rowe, D., Einstein Studies, Birkhäuser, Boston; Basel.
Forthcoming.
|
 |
|
Stachel, J. and Bradonjić, K., 2013, “Quantum Gravity: Meaning and Measurement”, arXiv, e-print.
[ ADS], [ arXiv:1302.2285 [gr-qc]].
|
 |
|
Stachel, J. and Iftime, M., 2005, “Fibered Manifolds, Natural Bundles, Structured Sets, G-Sets
and all that: The Hole Story from Space Time to Elementary Particles”, arXiv, e-print. [ ADS],
[ arXiv:gr-qc/0505138].
|
 |
|
Stephani, H., 2004, General Relativity: An introduction to the theory of the gravitational field,
Cambridge University Press, Cambridge; New York, 3rd edn. [ Google Books].
|
 |
|
Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C. and Herlt, E., 2003, Exact Solutions
to Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, Cambridge
University Press, Cambridge; New York, 2nd edn. [ Google Books].
|
 |
|
Teller, P., 1998, “Quantum Mechanics and Haecceities”, in Interpreting Bodies: Classical and
Quantum Objects in Modern Physics, (Ed.) Castellani, E., pp. 114–141, Princeton University Press,
Princeton, NJ. [ Google Books].
|
 |
|
Thiemann, T., 2001, “Introduction to Modern Canonical Quantum General Relativity”, arXiv,
e-print. [ arXiv:gr-qc/0110034].
|
 |
|
Torre, C.G., 1999, “Midisuperspace Models of Canonical Quantum Gravity”, Int. J. Theor. Phys.,
38, 1081–1102. [ DOI].
|
 |
|
Torretti, R., 1983, Relativity and Geometry, Foundations and philosophy of science and technology,
Pergamon Press, Oxford; New York. [ Google Books].
|
 |
|
Trautman, A., 1970, “Fibre bundles associated with space-time”, Rep. Math. Phys., 1, 29–62. [ DOI].
|
 |
|
Trautman, A., 1980, “Fiber Bundles, Gauge Fields, and Gravitation”, in General Relativity and
Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 1, (Ed.) Held, A., chap. 9,
pp. 287–308, Plenum Press, New York; London.
|
 |
|
Varadarajan, V.S., 2003, “Vector Bundles and Connections in Physics and Mathematics: Some
Historical Remarks”, in A Tribute to C.S. Seshadri: A Collection of Articles on Geometry and
Representation Theory, Symposium to felicitate C.S. Seshadri’s 70th birthday, held in Chennai,
India, March 1, 2002, (Eds.) Lakshmibai, V., Balaji, V., Mehta, V.B., Nagarajan, K.R., Paranjape,
K., Sankaran, P., Sridharan, R., Trends in Mathematics, pp. 502–541, Birkhäuser, Basel; Boston.
|
 |
|
Wald, R.M., 1984, General Relativity, University of Chicago Press, Chicago. [ ADS], [ Google Books].
|
 |
|
Wartofsky, M.W., 1968, Conceptual Foundations of Scientific Thought: An Introduction to the
Philosophy of Science, Macmillan, New York.
|
 |
|
Weyl, H., 1923, Raum, Zeit, Materie: Vorlesungen über allgemeine Relativitätstheorie, Julius
Springer, Berlin, 5th edn. [ DOI].
|
 |
|
Weyl, H., 1946, The Classical Groups: Their Invariants and Representations, Princeton Landmarks
in Mathematics, Princeton University Press, Princeton, NJ, 2nd edn. [ Google Books].
|
 |
|
Weyl, H., 1949, Philosophy of Mathematics and Natural Science, Princeton University Press,
Princeton, NJ. [ Google Books].
|
 |
|
Weyl, H., 1950, Space, Time, Matter, Dover Publications, New York. [ Google Books].
|
 |
|
Wikipedia contributors, “Group action”, online resource, Wikipedia Foundation. URL (accessed 13
December 2013):
http://en.wikipedia.org/wiki/Group_action.
|
 |
|
Yaglom, I.M., 1979, Simple Non-Euclidean Geometry and Its Physical Basis: An Elementary Account
of Galilean Geometry and the Galilean Principle of Relativity, Heidelberg Science Library, Springer,
New York; Berlin. [ DOI].
|