Department of Mathematics

Analytic Number Theory -- Trace Functions over Finite Fields

Please note that this page is old.
Check in the VVZ for a current information.
Lecturer Prof. Emmanuel Kowalski
Lecture Mo 15-17, HG G 5
Coordinator Benny Löffel
Exercises Mi 15-16, HG E 1.2

First lecture: Wednesday, September 17, 2014 during the exercise class.

Lecture notes:

Change of Schedule

Please note the following changes:

There are no lectures on Monday 22.09.2014 and 29.09.2014.

There is a regular exercise class on Wednesday 24.09.2014.

There is a lecture on Wednesday 1.10.2014 instead of the exercise class.


Trace functions over finite fields, and sums of trace functions, appear in many contexts of analytic number theory, from the study of primes to automorphic forms and L-functions. They contain both classical exponential sums over finite fields, families of these, and other functions of "algebraic nature". Their study is deeply linked with the Riemann Hypothesis over finite fields.

The goal is to understand the underlying theory of trace functions over finite fields, as well as the way they are used in a range of applications to analytic number theory.

The course will cover the following topics:

(1) Introduction and motivation: some examples of trace functions and where they appear

(2) The formalism of trace functions over finite fields

(3) The Riemann Hypothesis over finite fields

(4) Applications to analytic number theory


Algebra I, Mass und Integral; Commutative algebra and/or algebraic geometry would be useful.


First exercise session: 24.09.2014

Exercise Sheet Submission date Solution
sheet 1 8.10.2014 solution 1
sheet 2 15.10.2014 solution 2
sheet 3 22.10.2014 solution 3
sheet 4 29.10.2014 solution 4
sheet 5 12.11.2014 solution 5
sheet 6 19.11.2014 solution 6
sheet 7 26.11.2014 solution 7
sheet 8 3.12.2014 solution 8



Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne graphische Elemente dargestellt. Die Funktionalität der Website ist aber trotzdem gewährleistet. Wenn Sie diese Website regelmässig benutzen, empfehlen wir Ihnen, auf Ihrem Computer einen aktuellen Browser zu installieren. Weitere Informationen finden Sie auf
folgender Seite.

Important Note:
The content in this site is accessible to any browser or Internet device, however, some graphics will display correctly only in the newer versions of Netscape. To get the most out of our site we suggest you upgrade to a newer browser.
More information

© 2016 Mathematics Department | Imprint | Disclaimer | 2 January 2015