Department of Mathematics

Functional Analysis II

Please note that this page is old.
Check in the VVZ for a current information.

Start of the lecture: Monday, 16.2.2015
Start of the exercise classes: Monday, 23.2.2015

Prof. Manfred Einsiedler
Coordinator Rene Rühr


Spectral theory, Harmonic Analysis, Weyl's law for eigenfunctions of the (flat) Laplacian, Unitary representations, and expander networks. The student will learn the spectral theory of operators on Hilbert spaces, Fourier analysis from a more general view point, and other more sophisticated tools of functional analysis, e.g. Choquet's theorem, amenable groups, and groups with property (T). Another goal is to see the importance of functional analysis in many other mathematical areas like partial differential equations, theory of expanders, and number theory.


Monday 10 - 12 HG G 5
Thursday 1 - 3
HG G 5

Exercise Classes

Begins second semester week.

  Christian Beck
Monday 9-10 HG F 26.3
  Jonas Luehrmann
Monday 9-10
HG G 26.1
  Manuel Luethi
Monday 9-10 HG G 26.3


Sheets can be dropped off at J68.

Lecture History

Week 1
Sobolev Embedding of Open Sets
Week 2
Elliptic Regularity
Week 3
Trace Operators
Week 4
Weyl's Law / Amenable Groups
Week 5 Banach-Tarski / Riesz Representation
Week 6
Dirichlet Boundary Problem
Week 7
Bochner's Theorem and Spectral Theory of Unitary Operators
Week 8
Week 9
Spectral Theory of Self-adjoint Operators
Week 10
Fourier Transform
Week 11
Schwartz Space, Spectral Theory for Unitary 1-Parameter Group, Stone's Theorem
Week 12
Expanders and Property (T)
Week 13
Banach Algebras


The lecture will be accompanied by the Lecture Notes on Functional Analysis by M. Einsiedler and T. Ward.


Information to the exam.


Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne graphische Elemente dargestellt. Die Funktionalität der Website ist aber trotzdem gewährleistet. Wenn Sie diese Website regelmässig benutzen, empfehlen wir Ihnen, auf Ihrem Computer einen aktuellen Browser zu installieren. Weitere Informationen finden Sie auf
folgender Seite.

Important Note:
The content in this site is accessible to any browser or Internet device, however, some graphics will display correctly only in the newer versions of Netscape. To get the most out of our site we suggest you upgrade to a newer browser.
More information

© 2016 Mathematics Department | Imprint | Disclaimer | 10 June 2015